Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 19(9): 1035, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29955109

RESUMO

In the version of this article initially published, the accession code for the RNA-seq data set deposited in the NCBI public repository Sequence Read Archive was missing from the 'Data availability' subsection of the Methods section. The accession code is SRP125477.

2.
Nat Immunol ; 18(12): 1310-1320, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29035391

RESUMO

The hygiene hypothesis postulates that the recent increase in allergic diseases such as asthma and hay fever observed in Western countries is linked to reduced exposure to childhood infections. Here we investigated how infection with a gammaherpesvirus affected the subsequent development of allergic asthma. We found that murid herpesvirus 4 (MuHV-4) inhibited the development of house dust mite (HDM)-induced experimental asthma by modulating lung innate immune cells. Specifically, infection with MuHV-4 caused the replacement of resident alveolar macrophages (AMs) by monocytes with regulatory functions. Monocyte-derived AMs blocked the ability of dendritic cells to trigger a HDM-specific response by the TH2 subset of helper T cells. Our results indicate that replacement of embryonic AMs by regulatory monocytes is a major mechanism underlying the long-term training of lung immunity after infection.


Assuntos
Asma/terapia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Pyroglyphidae/imunologia , Rhadinovirus/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Asma/imunologia , Linhagem Celular , Cricetinae , Células Dendríticas/imunologia , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th2/transplante
3.
Proc Natl Acad Sci U S A ; 121(13): e2306763121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498711

RESUMO

Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Transportadores de Ácidos Monocarboxílicos , Simportadores , Animais , Camundongos , Transporte Biológico , Linfócitos T CD8-Positivos/metabolismo , Ácido Láctico/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo
4.
J Virol ; 97(7): e0013523, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338377

RESUMO

The development of effective and flexible vaccine platforms is a major public health challenge, especially in the context of influenza vaccines that have to be renewed every year. Adenoviruses (AdVs) are easy to produce and have a good safety and efficacy profile when administered orally, as demonstrated by the long-term use of oral AdV-4 and -7 vaccines in the U.S. military. These viruses therefore appear to be the ideal backbone for the development of oral replicating vector vaccines. However, research into these vaccines is limited by the ineffectiveness of human AdV replication in laboratory animals. The use of mouse AdV type 1 (MAV-1) in its natural host allows infection to be studied under replicating conditions. Here, we orally vaccinated mice with a MAV-1 vector expressing influenza hemagglutinin (HA) to assess the protection conferred against an intranasal challenge of influenza. We showed that a single oral immunization with this vaccine generates influenza-specific and -neutralizing antibodies and completely protects mice against clinical signs and viral replication, similar to traditional inactivated vaccines. IMPORTANCE Given the constant threat of pandemics and the need for annual vaccination against influenza and possibly emerging agents such as SARS-CoV-2, new types of vaccines that are easier to administer and therefore more widely accepted are a critical public health need. Here, using a relevant animal model, we have shown that replicative oral AdV vaccine vectors can help make vaccination against major respiratory diseases more available, better accepted, and therefore more effective. These results could be of major importance in the coming years in the fight against seasonal or emerging respiratory diseases such as COVID-19.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Camundongos , Animais , Adenoviridae/genética , Influenza Humana/prevenção & controle , Anticorpos Antivirais , SARS-CoV-2 , Imunização , Vacinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
5.
Nano Lett ; 21(1): 847-853, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373240

RESUMO

Viruses are one of the most efficient pathogenic entities on earth, resulting from millions of years of evolution. Each virus particle carries the minimum number of genes and proteins to ensure their reproduction within host cells, hijacking some host replication machinery. However, the role of some viral proteins is not yet unraveled, with some appearing even redundant. For example, murid herpesvirus 4, the current model for human gammaherpesvirus infection, can bind to cell surface glycosaminoglycans using both glycoproteins gp70 and gH/gL. Here, using atomic force microscopy, we discriminate their relative contribution during virus binding to cell surface glycosaminoglycans. Single-virus force spectroscopy experiments demonstrate that gH/gL is the main actor in glycosaminoglycan binding, engaging more numerous and more stable interactions. We also demonstrated that Fab antibody fragments targeting gH/gL or gp70 appear to be a promising treatment to prevent the attachment of virions to cell surfaces.


Assuntos
Proteínas do Envelope Viral , Vírus , Linhagem Celular , Glicoproteínas , Humanos , Análise Espectral
6.
Eur J Immunol ; 49(7): 1067-1081, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919955

RESUMO

Alternatively activated Mφs (AAMφ) accumulate in hepatic granulomas during schistosomiasis and have been suggested to originate in the bone marrow. What is less understood is how these Mφ responses are regulated after S. mansoni infection. Here, we investigated the role of IL-4 receptor α-chain (IL-4Rα)-signalling in the dynamics of liver Mφ responses. We observed that IL-4Rα signalling was dispensable for the recruitment of Ly6Chi monocytes and for their conversion into F4/80hi CD64hi CD11bhi Mφ. Moreover, while IL-4Rα provided an AAMφ phenotype to liver F4/80hi CD64hi CD11bhi Mφ that was associated with regulation of granuloma formation, it was dispensable for host survival. Resident F4/80hi CD64hi CD11blo Mφ did not upregulate the AAMφ signature gene Ym1. Rather, resident Mφ nearly disappeared by week 8 after infection and artificial ablation of resident Mφ in CD169DTR mice did not affect the response to S. mansoni infection. Interestingly, ablation of CD169+ cells in naive mice resulted in the accumulation of F4/80hi CD64hi CD11bhi Mφ, which was amplified when ablation occurred during schistosomiasis. Altogether, our results suggest the ablation of resident KCs after S. mansoni infection to be associated with the recruitment and accumulation of F4/80hi CD64hi CD11bhi Mφ with lyz2-dependent IL-4Rα contributing to the regulation of granuloma inflammation but being dispensable for host survival.


Assuntos
Granuloma/imunologia , Células de Kupffer/imunologia , Fígado/patologia , Macrófagos/imunologia , Receptores de Superfície Celular/metabolismo , Schistosoma mansoni/fisiologia , Esquistossomose/imunologia , Técnicas de Ablação , Animais , Modelos Animais de Doenças , Feminino , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Superfície Celular/genética , Transdução de Sinais
7.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996103

RESUMO

Since the 1970s, replication-competent human adenoviruses 4 and 7 have been used as oral vaccines to protect U.S. soldiers against the severe respiratory diseases caused by these viruses. These vaccines are thought to establish a digestive tract infection conferring protection against respiratory challenge through antibodies. The success of these vaccines makes replication-competent adenoviruses attractive candidates for use as oral vaccine vectors. However, the inability of human adenoviruses to replicate efficiently in laboratory animals has hampered the study of such vectors. Here, we used mouse adenovirus type 1 (MAV-1) in mice to study oral replication-competent adenovirus-based vaccines. We show that MAV-1 oral administration provides protection that recapitulates the protection against homologous respiratory challenge observed with adenovirus 4 and 7 vaccines. Moreover, live oral MAV-1 vaccine better protected against a respiratory challenge than inactivated vaccines. This protection was linked not only with the presence of MAV-1-specific antibodies but also with a better recruitment of effector CD8 T cells. However, unexpectedly, we found that such oral replication-competent vaccine systemically spread all over the body. Our results therefore support the use of MAV-1 to study replication-competent oral adenovirus-based vaccines but also highlight the fact that those vaccines can disseminate widely in the body.IMPORTANCE Replication-competent adenoviruses appear to be promising vectors for the development of oral vaccines in humans. However, the study and development of these vaccines suffer from the lack of any reliable animal model. In this study, mouse adenovirus type 1 was used to develop a small-animal model for oral replication-competent adenovirus vaccines. While this model reproduced in mice what is observed with human adenovirus oral vaccines, it also highlighted that oral immunization with such a replication-competent vaccine is associated with the systemic spread of the virus. This study is therefore of major importance for the future development of such vaccine platforms and their use in large human populations.


Assuntos
Infecções por Adenoviridae/prevenção & controle , Vacinas contra Adenovirus/imunologia , Administração Oral , Trato Gastrointestinal/imunologia , Vacinação , Adenoviridae/imunologia , Infecções por Adenoviridae/imunologia , Adenovírus Humanos , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia
8.
J Virol ; 90(4): 2039-51, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656682

RESUMO

UNLABELLED: Carbohydrates play major roles in host-virus interactions. It is therefore not surprising that, during coevolution with their hosts, viruses have developed sophisticated mechanisms to hijack for their profit different pathways of glycan synthesis. Thus, the Bo17 gene of Bovine herpesvirus 4 (BoHV-4) encodes a homologue of the cellular core 2 protein ß-1,6-N-acetylglucosaminyltransferase-mucin type (C2GnT-M), which is a key player for the synthesis of complex O-glycans. Surprisingly, we show in this study that, as opposed to what is observed for the cellular enzyme, two different mRNAs are encoded by the Bo17 gene of all available BoHV-4 strains. While the first one corresponds to the entire coding sequence of the Bo17 gene, the second results from the splicing of a 138-bp intron encoding critical residues of the enzyme. Antibodies generated against the Bo17 C terminus showed that the two forms of Bo17 are expressed in BoHV-4 infected cells, but enzymatic assays revealed that the spliced form is not active. In order to reveal the function of these two forms, we then generated recombinant strains expressing only the long or the short form of Bo17. Although we did not highlight replication differences between these strains, glycomic analyses and lectin neutralization assays confirmed that the splicing of the Bo17 gene gives the potential to BoHV-4 to fine-tune the global level of core 2 branching activity in the infected cell. Altogether, these results suggest the existence of new mechanisms to regulate the activity of glycosyltransferases from the Golgi apparatus. IMPORTANCE: Viruses are masters of adaptation that hijack cellular pathways to allow their growth. Glycans play a central role in many biological processes, and several studies have highlighted mechanisms by which viruses can affect glycosylation. Glycan synthesis is a nontemplate process regulated by the availability of key glycosyltransferases. Interestingly, bovine herpesvirus 4 encodes one such enzyme which is a key enzyme for the synthesis of complex O-glycans. In this study, we show that, in contrast to cellular homologues, this virus has evolved to alternatively express two proteins from this gene. While the first one is enzymatically active, the second results from the alternative splicing of the region encoding the catalytic site of the enzyme. We postulate that this regulatory mechanism could allow the virus to modulate the synthesis of some particular glycans for function at the location and/or the moment of infection.


Assuntos
Processamento Alternativo , Regulação Viral da Expressão Gênica , Herpesvirus Bovino 4/enzimologia , Herpesvirus Bovino 4/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Animais , Bovinos , Células Cultivadas , Perfilação da Expressão Gênica
9.
J Virol ; 90(5): 2455-72, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676769

RESUMO

UNLABELLED: Gammaherpesviruses are important human and animal pathogens. Despite the fact that they display the classical architecture of herpesviruses, the function of most of their structural proteins is still poorly defined. This is especially true for tegument proteins. Interestingly, a potential role in immune evasion has recently been proposed for the tegument protein encoded by Kaposi's sarcoma-associated herpesvirus open reading frame 63 (ORF63). To gain insight about the roles of ORF63 in the life cycle of a gammaherpesvirus, we generated null mutations in the ORF63 gene of murid herpesvirus 4 (MuHV-4). We showed that disruption of ORF63 was associated with a severe MuHV-4 growth deficit both in vitro and in vivo. The latter deficit was mainly associated with a defect of replication in the lung but did not affect the establishment of latency in the spleen. From a functional point of view, inhibition of caspase-1 or the inflammasome did not restore the growth of the ORF63-deficient mutant, suggesting that the observed deficit was not associated with the immune evasion mechanism identified previously. Moreover, this growth deficit was also not associated with a defect in virion egress from the infected cells. In contrast, it appeared that MuHV-4 ORF63-deficient mutants failed to address most of their capsids to the nucleus during entry into the host cell, suggesting that ORF63 plays a role in capsid movement. In the future, ORF63 could therefore be considered a target to block gammaherpesvirus infection at a very early stage of the infection. IMPORTANCE: The important diseases caused by gammaherpesviruses in human and animal populations justify a better understanding of their life cycle. In particular, the role of most of their tegument proteins is still largely unknown. In this study, we used murid herpesvirus 4, a gammaherpesvirus infecting mice, to decipher the role of the protein encoded by the viral ORF63 gene. We showed that the absence of this protein is associated with a severe growth deficit both in vitro and in vivo that was mainly due to impaired migration of viral capsids toward the nucleus during entry. Together, our results provide new insights about the life cycle of gammaherpesviruses and could allow the development of new antiviral strategies aimed at blocking gammaherpesvirus infection at the very early stages.


Assuntos
Transporte Biológico , Capsídeo/metabolismo , Rhadinovirus/fisiologia , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Cricetinae , Feminino , Deleção de Genes , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Histocitoquímica , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Rhadinovirus/genética , Rhadinovirus/crescimento & desenvolvimento , Proteínas Virais/genética
10.
PLoS Pathog ; 9(10): e1003753, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204281

RESUMO

Human gammaherpesviruses are associated with the development of lymphomas and epithelial malignancies. The heterogeneity of these tumors reflects the ability of these viruses to route infection to different cell types at various stages of their lifecycle. While the Epstein Barr virus uses gp42--human leukocyte antigen class II interaction as a switch of cell tropism, the molecular mechanism that orientates tropism of rhadinoviruses is still poorly defined. Here, we used bovine herpesvirus 4 (BoHV-4) to further elucidate how rhadinoviruses regulate their infectivity. In the absence of any gp42 homolog, BoHV-4 exploits the alternative splicing of its Bo10 gene to produce distinct viral populations that behave differently based on the originating cell. While epithelial cells produce virions with high levels of the accessory envelope protein gp180, encoded by a Bo10 spliced product, myeloid cells express reduced levels of gp180. As a consequence, virions grown in epithelial cells are hardly infectious for CD14+ circulating cells, but are relatively resistant to antibody neutralization due to the shielding property of gp180 for vulnerable entry epitopes. In contrast, myeloid virions readily infect CD14+ circulating cells but are easily neutralized. This molecular switch could therefore allow BoHV-4 to promote either, on the one hand, its dissemination into the organism, or, on the other hand, its transmission between hosts.


Assuntos
Processamento Alternativo/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Herpesvirus Bovino 4/imunologia , Proteínas Virais/imunologia , Processamento Alternativo/genética , Animais , Bovinos , Linhagem Celular , Herpesvirus Bovino 4/genética , Humanos , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Coelhos
11.
Sci Immunol ; 9(98): eado1227, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093958

RESUMO

The lung is constantly exposed to airborne pathogens and particles that can cause alveolar damage. Hence, appropriate repair responses are essential for gas exchange and life. Here, we deciphered the spatiotemporal trajectory and function of an atypical population of macrophages after lung injury. Post-influenza A virus (IAV) infection, short-lived monocyte-derived Ly6G-expressing macrophages (Ly6G+ Macs) were recruited to the alveoli of lung perilesional areas. Ly6G+ Macs engulfed immune cells, exhibited a high metabolic potential, and clustered with alveolar type 2 epithelial cells (AT2s) in zones of active epithelial regeneration. Ly6G+ Macs were partially dependent on granulocyte-macrophage colony-stimulating factor and interleukin-4 receptor signaling and were essential for AT2-dependent alveolar regeneration. Similar macrophages were recruited in other models of injury and in the airspaces of lungs from patients with suspected pneumonia. This study identifies perilesional alveolar Ly6G+ Macs as a spatially restricted, short-lived macrophage subset promoting epithelial regeneration postinjury, thus representing an attractive therapeutic target for treating lung damage.


Assuntos
Antígenos Ly , Lesão Pulmonar , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Regeneração , Animais , Antígenos Ly/metabolismo , Antígenos Ly/imunologia , Camundongos , Regeneração/imunologia , Lesão Pulmonar/imunologia , Macrófagos Alveolares/imunologia , Masculino , Humanos , Feminino , Infecções por Orthomyxoviridae/imunologia , Alvéolos Pulmonares/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia
12.
J Virol ; 86(5): 2653-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205754

RESUMO

The core entry machinery of mammalian herpesviruses comprises glycoprotein B (gB), gH, and gL. gH and gL form a heterodimer with a central role in viral membrane fusion. When archetypal alpha- or betaherpesviruses lack gL, gH misfolds and progeny virions are noninfectious. However, the gL of the rhadinovirus murid herpesvirus 4 (MuHV-4) is nonessential for infection. In order to define more generally what role gL plays in rhadinovirus infections, we disrupted its coding sequence in bovine herpesvirus 4 (BoHV-4). BoHV-4 lacking gL showed altered gH glycosylation and incorporated somewhat less gH into virions but remained infectious. However, gL(-) virions showed poor growth associated with an entry deficit. Moreover, a major part of their entry defect appeared to reflect impaired endocytosis, which occurs upstream of membrane fusion itself. Thus, the rhadinovirus gL may be more important for driving virion endocytosis than for incorporating gH into virions, and it is nonessential for membrane fusion.


Assuntos
Doenças dos Bovinos/fisiopatologia , Endocitose , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 4/fisiologia , Proteínas do Envelope Viral/metabolismo , Vírion/fisiologia , Internalização do Vírus , Animais , Bovinos , Doenças dos Bovinos/virologia , Infecções por Herpesviridae/fisiopatologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 4/genética , Proteínas do Envelope Viral/genética , Vírion/genética
13.
J Virol ; 86(21): 11567-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22896609

RESUMO

Gammaherpesviruses are important pathogens in human and animal populations. During early events of infection, these viruses manipulate preexisting host cell signaling pathways to allow successful infection. The different proteins that compose viral particles are therefore likely to have critical functions not only in viral structures and in entry into target cell but also in evasion of the host's antiviral response. In this study, we analyzed the protein composition of bovine herpesvirus 4 (BoHV-4), a close relative of the human Kaposi's sarcoma-associated herpesvirus. Using mass spectrometry-based approaches, we identified 37 viral proteins associated with extracellular virions, among which 24 were resistant to proteinase K treatment of intact virions. Analysis of proteins associated with purified capsid-tegument preparations allowed us to define protein localization. In parallel, in order to identify some previously undefined open reading frames, we mapped peptides detected in whole virion lysates onto the six frames of the BoHV-4 genome to generate a proteogenomic map of BoHV-4 virions. Furthermore, we detected important glycosylation of three envelope proteins: gB, gH, and gp180. Finally, we identified 38 host proteins associated with BoHV-4 virions; 15 of these proteins were resistant to proteinase K treatment of intact virions. Many of these have important functions in different cellular pathways involved in virus infection. This study extends our knowledge of gammaherpesvirus virions composition and provides new insights for understanding the life cycle of these viruses.


Assuntos
Herpesvirus Bovino 4/química , Proteoma/análise , Proteínas Virais/análise , Vírion/química , Animais , Bovinos , Linhagem Celular , Glicoproteínas/análise , Espectrometria de Massas
14.
PLoS Pathog ; 7(11): e1002387, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22114560

RESUMO

All gammaherpesviruses encode a major glycoprotein homologous to the Epstein-Barr virus gp350. These glycoproteins are often involved in cell binding, and some provide neutralization targets. However, the capacity of gammaherpesviruses for long-term transmission from immune hosts implies that in vivo neutralization is incomplete. In this study, we used Bovine Herpesvirus 4 (BoHV-4) to determine how its gp350 homolog--gp180--contributes to virus replication and neutralization. A lack of gp180 had no impact on the establishment and maintenance of BoHV-4 latency, but markedly sensitized virions to neutralization by immune sera. Antibody had greater access to gB, gH and gL on gp180-deficient virions, including neutralization epitopes. Gp180 appears to be highly O-glycosylated, and removing O-linked glycans from virions also sensitized them to neutralization. It therefore appeared that gp180 provides part of a glycan shield for otherwise vulnerable viral epitopes. Interestingly, this O-glycan shield could be exploited for neutralization by lectins and carbohydrate-specific antibody. The conservation of O-glycosylation sites in all gp350 homologs suggests that this is a general evasion mechanism that may also provide a therapeutic target.


Assuntos
Herpesvirus Bovino 4/imunologia , Glicoproteínas de Membrana/fisiologia , Proteínas do Envelope Viral/fisiologia , Sequência de Aminoácidos , Animais , Epitopos/imunologia , Glicosilação , Herpesvirus Bovino 4/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Dados de Sequência Molecular , Testes de Neutralização , Coelhos , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Vírion/imunologia , Replicação Viral/imunologia
15.
Front Immunol ; 14: 1149015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081878

RESUMO

Respiratory infections and especially viral infections, along with other extrinsic environmental factors, have been shown to profoundly affect macrophage populations in the lung. In particular, alveolar macrophages (AMs) are important sentinels during respiratory infections and their disappearance opens a niche for recruited monocytes (MOs) to differentiate into resident macrophages. Although this topic is still the focus of intense debate, the phenotype and function of AMs that recolonize the niche after an inflammatory insult, such as an infection, appear to be dictated in part by their origin, but also by local and/or systemic changes that may be imprinted at the epigenetic level. Phenotypic alterations following respiratory infections have the potential to shape lung immunity for the long-term, leading to beneficial responses such as protection against allergic airway inflammation or against other infections, but also to detrimental responses when associated with the development of immunopathologies. This review reports the persistence of virus-induced functional alterations in lung macrophages, and discusses the importance of this imprinting in explaining inter-individual and lifetime immune variation.


Assuntos
Pulmão , Infecções Respiratórias , Humanos , Macrófagos Alveolares , Inflamação , Macrófagos
16.
Bio Protoc ; 13(18): e4818, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753474

RESUMO

During life, the embryonic alveolar macrophage (AM) population undergoes successive waves of depletion and replenishment in response to infectious and inflammatory episodes. While resident AMs are traditionally described as from embryonic origin, their ontogeny following inflammation or infection is much more complex. Indeed, it appears that the contribution of monocytes (MOs) to the AM pool is variable and depends on the type of inflammation, its severity, and the signals released in the microenvironment of the pulmonary niche (peripheral imprinting) and/or in the bone marrow (central imprinting). Deciphering the cellular and molecular mechanisms regulating the differentiation of MOs into AMs remains an area of intense investigation, as this could potentially explain part of the inter-individual susceptibility to respiratory immunopathologies. Here, we detail a relevant ex vivo co-culture model to investigate how lung epithelial cells (ECs) and group 2 lung innate lymphoid cells (ILC2s) contribute to the differentiation of recruited MOs into AMs. Interestingly, the presence of lung ILC2s and ECs provides the necessary niche signals to ensure the differentiation of bone marrow MOs into AMs, thus establishing an accessible model to study the underlying mechanisms following different infection or inflammation processes. Key features • Ex vivo co-culture model of the alveolar niche. • Deciphering the particular niche signals underlying the differentiation of MO into AMs and their functional polarization.

17.
Bio Protoc ; 13(18): e4815, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753475

RESUMO

Gammaherpesviruses such as Epstein-Barr virus (EBV) are major modulators of the immune responses of their hosts. In the related study (PMID: 35857578), we investigated the role for Ly6Chi monocytes in shaping the function of effector CD4+ T cells in the context of a murine gammaherpesvirus infection (Murid gammaherpesvirus 4) as a model of human EBV. In order to unravel the polyfunctional properties of CD4+ T-cell subsets, we used multiparametric flow cytometry to perform intracellular staining on lung cells. As such, we have developed herein an intracellular staining workflow to identify on the same samples the cytotoxic and/or regulatory properties of CD4+ lymphocytes at the single-cell level. Briefly, following perfusion, collection, digestion, and filtration of the lung to obtain a single-cell suspension, lung cells were cultured for 4 h with protein transport inhibitors and specific stimulation media to accumulate cytokines of interest and/or cytotoxic granules. After multicolor surface labeling, fixation, and mild permeabilization, lung cells were stained for intracytoplasmic antigens and analyzed with a Fortessa 4-laser cytometer. This method of quantifying cytotoxic mediators as well as pro- or anti-inflammatory cytokines by flow cytometry has allowed us to decipher at high resolution the functional heterogeneity of lung CD4+ T cells recruited after a viral infection. Therefore, this analysis provided a better understanding of the importance of CD4+ T-cell regulation to prevent the development of virus-induced immunopathologies in the lung. Key features • High-resolution profiling of the functional properties of lung-infiltrating CD4+ T cells after viral infection using conventional multiparametric flow cytometry. • Detailed protocol for mouse lung dissection, preparation of single-cell suspension, and setup of multicolor surface/intracellular staining. • Summary of optimal ex vivo restimulation conditions for investigating the functional polarization and cytokine production of lung-infiltrating CD4+ T cells. • Comprehensive compilation of necessary biological and technical controls to ensure reliable data analysis and interpretation.

18.
Sci Immunol ; 8(80): eabl9041, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827420

RESUMO

Immunological dysregulation in asthma is associated with changes in exposure to microorganisms early in life. Gammaherpesviruses (γHVs), such as Epstein-Barr virus, are widespread human viruses that establish lifelong infection and profoundly shape host immunity. Using murid herpesvirus 4 (MuHV-4), a mouse γHV, we show that after infection, lung-resident and recruited group 2 innate lymphoid cells (ILC2s) exhibit a reduced ability to expand and produce type 2 cytokines in response to house dust mites, thereby contributing to protection against asthma. In contrast, MuHV-4 infection triggers GM-CSF production by those lung ILC2s, which orders the differentiation of monocytes (Mos) into alveolar macrophages (AMs) without promoting their type 2 functions. In the context of γHV infection, ILC2s are therefore essential cells within the pulmonary niche that imprint the tissue-specific identity of Mo-derived AMs and shape their function well beyond the initial acute infection.


Assuntos
Asma , Infecções por Vírus Epstein-Barr , Rhadinovirus , Humanos , Camundongos , Animais , Macrófagos Alveolares , Imunidade Inata , Linfócitos , Herpesvirus Humano 4 , Rhadinovirus/fisiologia
19.
J Virol ; 85(2): 1011-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21068242

RESUMO

All gammaherpesviruses encode a glycoprotein positionally homologous to the Epstein-Barr virus gp350 and the Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1. In this study, we characterized the positional homologous glycoprotein of bovine herpesvirus 4 (BoHV-4), encoded by the Bo10 gene. We identified a 180-kDa gene product, gp180, that was incorporated into the virion envelope. A Bo10 deletion virus was viable but showed a growth deficit associated with reduced binding to epithelial cells. This seemed to reflect an interaction of gp180 with glycosaminoglycans (GAGs), since compared to the wild-type virus, the Bo10 mutant virus was both less infectious for GAG-positive (GAG(+)) cells and more infectious for GAG-negative (GAG(-)) cells. However, we could not identify a direct interaction between gp180 and GAGs, implying that any direct interaction must be of low affinity. This function of gp180 was very similar to that previously identified for the murid herpesvirus 4 gp150 and also to that of the Epstein-Barr virus gp350 that promotes CD21(+) cell infection and inhibits CD21(-) cell infection. We propose that such proteins generally regulate virion attachment both by binding to cells and by covering another receptor-binding protein until they are displaced. Thus, they regulate viral tropism both positively and negatively depending upon the presence or absence of their receptor.


Assuntos
Herpesvirus Bovino 4/fisiologia , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/fisiologia , Tropismo Viral , Animais , Bovinos , Linhagem Celular , Células Epiteliais/virologia , Deleção de Genes , Peso Molecular , Proteoma/análise , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírion/química , Ligação Viral
20.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146652

RESUMO

Canine Distemper Virus (CDV) is a fatal and highly contagious pathogen of multiple carnivores. While injectable vaccines are very effective in protecting domestic animals, their use in the wild is unrealistic. Alternative vaccines are therefore needed. Adenovirus (AdV) vectors are popular vaccine vectors due to their capacity to elicit potent humoral and cellular immune responses against the antigens they carry. In parallel, vaccines based on live human AdV-4 and -7 have been used in U.S. army for several decades as replicative oral vaccines against respiratory infection with the same viruses. Based on these observations, the use of oral administration of replication competent AdV-vectored vaccines has emerged as a promising tool especially for wildlife vaccination. Developing this type of vaccine is not easy, however, given the high host specificity of AdVs and their very low replication in non-target species. To overcome this problem, the feasibility of this approach was tested using mouse adenovirus 1 (MAV-1) in mice as vaccine vectors. First, different vaccine vectors expressing the entire or part H or F proteins of CDV were constructed. These different strains were then used as oral vaccines in BALB/c mice and the immune response to CDV was evaluated. Only the strain expressing the full length CDV H protein generated a detectable and neutralizing immune response to CDV. Secondly, using this strain, we were able to show that although this type of vaccine is sensitive to pre-existing immunity to the vector, a second oral administration of the same vaccine is able to boost the immune response against CDV. Overall, this study demonstrates the feasibility of using replicating AdVs as oral vaccine vectors to immunize against CDV in wildlife carnivores.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Vírus da Cinomose Canina , Cinomose , Vacinas Virais , Adenoviridae/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Cinomose/prevenção & controle , Vírus da Cinomose Canina/fisiologia , Cães , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA