Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 86(23): 12806-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22973044

RESUMO

In human papillomavirus DNA replication, the viral protein E2 forms homodimers and binds to 12-bp palindromic DNA sequences surrounding the origin of DNA replication. Via a protein-protein interaction, it then recruits the viral helicase E1 to an A/T-rich origin of replication, whereupon a dihexamer forms, resulting in DNA replication initiation. In order to carry out DNA replication, the viral proteins must interact with host factors that are currently not all known. An attractive cellular candidate for regulating viral replication is TopBP1, a known interactor of the E2 protein. In mammalian DNA replication, TopBP1 loads DNA polymerases onto the replicative helicase after the G(1)-to-S transition, and this process is tightly cell cycle controlled. The direct interaction between E2 and TopBP1 would allow E2 to bypass this cell cycle control, resulting in DNA replication more than once per cell cycle, which is a requirement for the viral life cycle. We report here the generation of an HPV16 E2 mutant compromised in TopBP1 interaction in vivo and demonstrate that this mutant retains transcriptional activation and repression functions but has suboptimal DNA replication potential. Introduction of this mutant into a viral life cycle model results in the failure to establish viral episomes. The results present a potential new antiviral target, the E2-TopBP1 interaction, and increase our understanding of the viral life cycle, suggesting that the E2-TopBP1 interaction is essential.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Southern Blotting , Western Blotting , Primers do DNA/genética , Densitometria , Dimerização , Células HEK293 , Papillomavirus Humano 16/metabolismo , Humanos , Imunoprecipitação , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Origem de Replicação/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Carcinogenesis ; 30(2): 249-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060248

RESUMO

The Src family tyrosine kinases are key modulators of cancer cell invasion and metastasis and a number of Src kinase inhibitors are currently in clinical development for the treatment of solid tumours. However, there is growing evidence that Src is also upregulated at very early stages of epithelial cancer development. We have investigated the role of Src in mouse skin, which is one of the most tractable models of epithelial homoeostasis and tumorigenesis. We found that Src protein expression and activity was regulated during the normal hair cycle and was increased specifically during the proliferative anagen phase and also in response to the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). AZD0530, a selective Src inhibitor, prevented the TPA-induced proliferation of basal keratinocytes both in vivo and in vitro. Moreover, treatment with AZD0530 reduced papilloma formation following the well-established 7,12-dimethylbenz(a)anthracene/TPA skin carcinogenesis protocol but did not inhibit the subsequent proliferation of the papillomas. Furthermore, AZD0530 did not alter the malignant conversion of papillomas to squamous cell carcinoma suggesting a role for Src in early tumour development in the skin carcinogenesis model, rather than at later stages of tumour progression. Src expression and activity were also seen in human actinic keratoses that are hyperproliferative pre-malignant skin lesions, indicating that Src may also play a role in the early stages of human skin tumour development. Thus, Src inhibitors such as AZD0530 may therefore have chemopreventative properties in patients with hyperproliferative epidermal disorders.


Assuntos
Anticarcinógenos/uso terapêutico , Benzodioxóis/uso terapêutico , Transformação Celular Neoplásica/efeitos dos fármacos , Quinazolinas/uso terapêutico , Neoplasias Cutâneas/prevenção & controle , Quinases da Família src/metabolismo , Adulto , Idoso , Animais , Anticarcinógenos/farmacologia , Benzodioxóis/farmacologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Ceratose/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Papiloma/induzido quimicamente , Papiloma/tratamento farmacológico , Lesões Pré-Cancerosas/metabolismo , Quinazolinas/farmacologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA