RESUMO
The excitation of the ^{181m}Ta isomer in the laser-plasma scenario was claimed to have been observed more than two decades ago. However, the reported experimental findings-and the respective high excitation rate-were later questioned as they could not be reproduced theoretically. The controversy has remained open ever since. In this work, we reinvestigate both theoretically and experimentally the ^{181m}Ta nuclear excitation in an optical laser-generated plasma. Experimentally we have found no evidence for such an excitation process as consistently predicted by previous and our theoretical models.
RESUMO
A nuclear excitation following the capture of an electron in an empty orbital has been recently observed for the first time. So far, the evaluation of the cross section of the process has been carried out widely using the assumption that the ion is in its electronic ground state prior to the capture. We show that by lifting this restriction new capture channels emerge resulting in a boost of more than three orders of magnitude to the electron capture resonance strength.
RESUMO
Efficient excitation of nuclei via exchange of a real or virtual photon has a fundamental importance for nuclear science and technology development. Here, we present a mechanism of nuclear excitation based on the capture of a free muon into the atomic orbits (NEµC). The cross section of such a proposed process is evaluated using the Feshbach projection operator formalism and compared to other known excitation phenomena, i.e., photoexcitation and nuclear excitation by electron capture (NEEC), showing up to 10 orders of magnitude increase in cross section. NEµC is particularly interesting for MeV excitations that become accessible thanks to the stronger binding of muons to the nucleus. The binding energies of muonic atoms have been calculated introducing a state of the art modification to the Flexible Atomic Code. An analysis of experimental scenarios in the context of modern muon production facilities shows that the effect can be detectable for selected isotopes. The total probability of NEµC is predicted to be P≈1×10^{-6} per incident muon in a beam-based scenario. Given the high transition energy provided by muons, NEµC can have important consequences for isomer feeding and particle-induced fission.
RESUMO
Dense micron-sized electron plasmas, such as those generated upon irradiation of nanostructured metallic surfaces by intense femtosecond laser pulses, constitute a rich playground to study light-matter interactions, many-body phenomena, and out-of-equilibrium charge dynamics. Besides their fundamental interest, laser-induced plasmas hold great potential for the generation of localized terahertz radiation pulses. However, the underlying mechanisms ruling the formation and evolution of such plasmas are not yet well understood. Here, we develop a comprehensive microscopic theory to predictably describe the spatiotemporal dynamics of laser-pulse-induced plasmas. Through detailed analysis of electron emission, metal screening, and plasma cloud interactions, we investigate the spatial, temporal, and spectral characteristics of the so-generated terahertz fields, which can be extensively controlled through the metal morphology and the illumination conditions. We further describe the interaction with femtosecond electron beams to explain recent ultrafast electron microscopy experiments, whereby the position and temporal dependence of the observed electron acceleration permits assessing the associated terahertz field. Besides its potential application to the design of low-frequency light sources, our work contributes fundamental insight into the generation and dynamics of micron-scale electron plasmas and their interaction with ultrafast electron pulses.
RESUMO
The ultrafast dynamics of charge carriers in solids plays a pivotal role in emerging optoelectronics, photonics, energy harvesting, and quantum technology applications. However, the investigation and direct visualization of such nonequilibrium phenomena remains as a long-standing challenge, owing to the nanometer-femtosecond spatiotemporal scales at which the charge carriers evolve. Here, we propose and demonstrate an interaction mechanism enabling nanoscale imaging of the femtosecond dynamics of charge carriers in solids. This imaging modality, which we name charge dynamics electron microscopy (CDEM), exploits the strong interaction of free-electron pulses with terahertz (THz) near fields produced by the moving charges in an ultrafast scanning transmission electron microscope. The measured free-electron energy at different spatiotemporal coordinates allows us to directly retrieve the THz near-field amplitude and phase, from which we reconstruct movies of the generated charges by comparison to microscopic theory. The CDEM technique thus allows us to investigate previously inaccessible spatiotemporal regimes of charge dynamics in solids, providing insight into the photo-Dember effect and showing oscillations of photogenerated electron-hole distributions inside a semiconductor. Our work facilitates the exploration of a wide range of previously inaccessible charge-transport phenomena in condensed matter using ultrafast electron microscopy.
RESUMO
Understanding and actively controlling the spatiotemporal dynamics of nonequilibrium electron clouds is fundamental for the design of light and electron sources, high-power electronic devices, and plasma-based applications. However, electron clouds evolve in a complex collective fashion on the nanometer and femtosecond scales, producing electromagnetic screening that renders them inaccessible to existing optical probes. Here, we solve the long-standing challenge of characterizing the evolution of electron clouds generated upon irradiation of metallic structures using an ultrafast transmission electron microscope to record the charged plasma dynamics. Our approach to charge dynamics electron microscopy (CDEM) is based on the simultaneous detection of electron-beam acceleration and broadening with nanometer/femtosecond resolution. By combining experimental results with comprehensive microscopic theory, we provide a deep understanding of this highly out-of-equilibrium regime, including previously inaccessible intricate microscopic mechanisms of electron emission, screening by the metal, and collective cloud dynamics. Beyond the present specific demonstration, the here-introduced CDEM technique grants us access to a wide range of nonequilibrium electrodynamic phenomena involving the ultrafast evolution of bound and free charges on the nanoscale.
RESUMO
The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices.
RESUMO
Spatiotemporal electron-beam shaping is a bold frontier of electron microscopy. Over the past decade, shaping methods evolved from static phase plates to low-speed electrostatic and magnetostatic displays. Recently, a swift change of paradigm utilizing light to control free electrons has emerged. Here, we experimentally demonstrate arbitrary transverse modulation of electron beams without complicated electron-optics elements or material nanostructures, but rather using shaped light beams. On-demand spatial modulation of electron wavepackets is obtained via inelastic interaction with transversely shaped ultrafast light fields controlled by an external spatial light modulator. We illustrate this method for the cases of Hermite-Gaussian and Laguerre-Gaussian modulation and discuss their use in enhancing microscope sensitivity. Our approach dramatically widens the range of patterns that can be imprinted on the electron profile and greatly facilitates tailored electron-beam shaping.
RESUMO
Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO2 nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10-21 m â s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO2, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution.
RESUMO
Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.