Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(46): 32216-32233, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37987656

RESUMO

Trimethylamine (TMA) is highly toxic and can have lethal effects on living organisms. Detecting the presence of TMA in air is very important because, if the TMA level exceeds the OSHA (Occupational Safety and Health Administration) limit, it may harm the environment and endanger human life. Doping is an appropriate flexible way to change the electrical structures of metal oxide semiconductors (MOSs) and improve their ability to detect toxic gases. In this work, Mn-doped zinc ferrite thin film nanorods with agglomerated morphology were fabricated by a spray pyrolysis technique. For the first time, a comprehensive investigation was done on the gas sensing capabilities of Mn-doped ZnFe2O4 thin films. The findings showed that ZFM1 had the best gas sensing characteristics, with high sensitivity (S = 6.24), good selectivity, and quick recovery, towards 10 ppm TMA at ambient temperature. The alternate Mn-ZF sites are responsible for the rapid recovery because they can significantly increase the concentration of oxygen vacancies in the ZF crystal. 0.1 Mn doped ZnFe2O4 (ZFM1) thin film exhibits greatly enhanced gas sensing properties towards TMA, because of its high surface-to-volume ratio and rough surface with a small nanorod structure. The sensor's response to 10 ppm TMA was measured 13 weeks later for stability testing. The stability test results show that the coated ZFM1 film works well as a TMA gas sensor. This work shows that ZF thin films are effective in detecting TMA in the atmosphere.

2.
Mikrochim Acta ; 187(4): 253, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236746

RESUMO

This review (with 200 references) summarises the state of the art of gas and vapour sensors based on the use of vanadium oxide (VOx; with V occurring in various valencies) nanostructures. Following an introduction that covers the discussion of VOx and their stable forms, the first large section covers experimental techniques employed for preparing VOx nanostructures, with methods such as precipitation, hydrothermal synthesis, electrospinning, polyol techniques, laser deposition, and magnetron sputtering. The next section deals with VOx-based sensors for oxidising gases such as nitrogen dioxide, carbon dioxide, oxygen, and ozone. We then discuss sensors for reducing gases and vapour, such as various alcohols, formaldehyde, hydrogen, methane, various amines, hydrogen sulphide, LPG, and neutral gases and vapours such as helium and humidity. An overview of the wealth of materials, methods, and sensing characteristics such as sensor response, analytical ranges, and operational temperatures is presented in Tables. The final section briefs the VOx-based flexible sensors, followed by a concluding section that summarises the current status and challenges, and gives an outlook on potential future perspectives. Graphical abstract The state of the art of vanadium oxide nanostructures in gas/vapour sensing has been discussed in this work.

3.
ACS Omega ; 8(36): 32848-32854, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720763

RESUMO

Despite the high sensitivity and selectivity, the high operating temperature required for activation energy of tin oxide (SnO2) still stands as a drawback for SnO2 based gas sensors. In this work, the SnO2 thin films were deposited through spray pyrolysis and were subjected to gas sensing at 27 °C (room temperature) towards different gases. The films exhibited a consistently low response of approximately 1 when tested to various VOCs. The type, concentration, and mobility of charge carriers were determined from the Hall measurements. The high carrier concentration accompanied by poor mobility and grain boundary scattering is supposed to hinder its performance at room temperature. The obtained film had spherical morphology, which lead to grain boundary scatterings and decreased the mobility of carriers.

4.
ACS Appl Mater Interfaces ; 15(40): 47058-47069, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772960

RESUMO

Mg3Sb2-based Zintl compounds have garnered recent attention as promising materials for thermoelectric applications due to their low thermal conductivity and high zT values as n-type materials. However, the zT values of p-type materials are lower compared to their n-type counterparts. Through a straightforward process involving cold pressing and evacuating-and-encapsulating sintering, we have successfully synthesized a variety of p-type Mg3-xZnxSb2/Sb composites by adding the ZnSb-4%Sb composite into the Mg3Sb2 host material. Structural analyses have provided insights into the role of the ZnSb-4%Sb composite, demonstrating its significance in Zn doping on the Mg sites and Sb acting as an additive in the composite. The introduction of Zn on the Mg tetrahedral sites enhances the concentration of carriers, while the presence of highly conductive Sb grains facilitates the movement of charge carriers between adjacent Mg3-xZnxSb2 grains, thereby promoting mobility. Consequently, the electrical resistivity of the Mg3-xZnxSb2/Sb composites decreases as the Zn content increases. At 710 K, the Mg1.91Zn1.09Sb2/Sb composite exhibits the lowest resistivity, measuring 5.1 mΩ-cm, which is 46 times lower than that of the Mg3Sb2 host. Furthermore, the zT value of the Mg3-xZnxSb2/Sb composites increases with higher Zn content (x), benefiting from a combination of an improved power factor and reduced thermal conductivity. Significantly, our straightforward fabrication process enables us to achieve a maximum zT value of 0.58 at 710 K for the Mg1.91Zn1.09Sb2/Sb composite. This achievement can primarily be attributed to the 8-fold enhancement in power factor compared to the Mg3Sb2 host.

5.
J Nanosci Nanotechnol ; 20(5): 3131-3139, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635657

RESUMO

To date, reports on metal oxide semiconductors for selective detection of dimethylamine (DMA) is in scarce. Hence in our study, we report titanium oxide (TiO2) as a promising candidate for tuned selectivity towards DMA. Highly uniform TiO2 thin films were successfully deposited on glass substrates using reactive dc magnetron sputtering at various substrate temperatures. Polycrystalline nature of rutile TiO2 was confirmed by X-ray diffraction technique (XRD). The uniform surface morphology of the sputtered TiO2 thin films was revealed by Field Emission Scanning Electron Microscopy (FESEM). An upsurge in optical band gap from 3.18 to 3.4 eV was observed with increase in substrate temperature. The sensing studies of the sputtered TiO2 thin films exhibited a significant sensor response towards the lower concentration of DMA at ambient temperature. It is deemed that this work will provide an insight to develop DMA sensors based on TiO2 thin films.

6.
Anal Chim Acta ; 1106: 148-160, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145843

RESUMO

Methane (CH4) gas, the second most potent greenhouse gas share a substantial role in contributing to the global warming and it is a necessary pre-requisite to detect the release of CH4 into the environment at its early stage to combat climate change. In that front, this work is focussed to develop an effective CH4 gas sensor using vanadium pentoxide (V2O5) thin films that works at an operating temperature of ∼100 °C. To understand the effect of sputtering power towards the structural characteristics of V2O5 films, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) analysis were performed from which the orthorhombic polycrystalline structure of V2O5 thin films was confirmed with varied texture co-efficient. Further, the surface elemental studies using X-ray photoelectron spectroscopy (XPS) confirmed the prominence of V+5 oxidation state from the binding energy of V2p3/2 and O1s peak. The effect of sputtering power on the growth of different nanostructures were observed using field-emission scanning electron microscopy (FE-SEM). The critical role of adsorption and desorption kinetics of the deposited nanostructures were explained through first order kinetics based on Elovich model and the phase stability of different nanostructures were evaluated using Raman spectral analysis. This work achieved the sensor response of about ∼8% towards CH4 at an operating temperature of 100 °C towards 50 ppm concentration.

7.
Nanoscale Adv ; 1(5): 1799-1811, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134232

RESUMO

Incorporation of reduced graphene oxide (rGO) modifies the properties of semiconducting metal oxide nanoparticles and makes it possible to tune the surface area and pore size to optimum values, which in turn improves their gas sensing properties. In this work, to improve the ammonia (NH3) gas sensing characteristics, reduced graphene oxide (rGO) was incorporated into tungsten oxide (WO3) nanospheres using a simple ultrasonication method. The rGO-WO3 nanocomposites exhibited porous nanosheets with nanospherical WO3 as observed with field-emission scanning electron microscopy (FE-SEM). The oxidation state of the rGO-WO3 nanocomposite was determined using X-ray photoelectron spectroscopy (XPS). Three ratios of (1, 5 and 10% rGO/WO3) nanocomposites and pure WO3 showed good selectivity towards NH3 at 10-100 ppm, and more remarkably at room temperature in the range of about 32-35 °C and at a relative humidity (RH) of 55%. The limit of detection (LOD) of the synthesized rGO-WO3 nanocomposites was 1.14 ppm, which will highly favour low detection ranges of NH3. The sensor response was 1.5 times higher than that of the bare WO3 nanospheres. The sensors showed excellent selectivity, ultrafast response/recovery times (18/24 s), reproducibility and stability even after one month of their preparation. We believe that metal oxides using the rGO modifier can improve the sensitivity and reduce the LOD towards NH3 and can be used effectively in real-time environmental monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA