Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Perinat Med ; 50(2): 207-218, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34717055

RESUMO

OBJECTIVES: Oxytocin (OXT) is widely used to facilitate labor. However, little is known about the effects of perinatal OXT exposure on the developing brain. We investigated the effects of maternal OXT administration on gene expression in perinatal mouse brains. METHODS: Pregnant C57BL/6 mice were treated with saline or OXT at term (n=6-7/group). Dams and pups were euthanized on gestational day (GD) 18.5 after delivery by C-section. Another set of dams was treated with saline or OXT (n=6-7/group) and allowed to deliver naturally; pups were euthanized on postnatal day 9 (PND9). Perinatal/neonatal brain gene expression was determined using Illumina BeadChip Arrays and real time quantitative PCR. Differential gene expression analyses were performed. In addition, the effect of OXT on neurite outgrowth was assessed using PC12 cells. RESULTS: Distinct and sex-specific gene expression patterns were identified in offspring brains following maternal OXT administration at term. The microarray data showed that female GD18.5 brains exhibited more differential changes in gene expression compared to male GD18.5 brains. Specifically, Cnot4 and Frmd4a were significantly reduced by OXT exposure in male and female GD18.5 brains, whereas Mtap1b, Srsf11, and Syn2 were significantly reduced only in female GD18.5 brains. No significant microarray differences were observed in PND9 brains. By quantitative PCR, OXT exposure reduced Oxtr expression in female and male brains on GD18.5 and PND9, respectively. PC12 cell differentiation assays revealed that OXT induced neurite outgrowth. CONCLUSIONS: Prenatal OXT exposure induces sex-specific differential regulation of several nervous system-related genes and pathways with important neural functions in perinatal brains.


Assuntos
Ocitocina , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/farmacologia , Gravidez
2.
Am J Physiol Renal Physiol ; 313(2): F339-F350, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424213

RESUMO

Approximately 30% of all cancer patients treated with cisplatin, a widely used broad-spectrum chemotherapeutic agent, experience acute kidney injury (AKI). Almost all patients receiving cisplatin have magnesium (Mg) losses, which are proposed to aggravate AKI. Currently, there are no methods to successfully treat or prevent cisplatin-AKI. Whereas Mg supplementation has been shown to reduce AKI in experimental models and several small clinical trials, the effects of Mg status on tumor outcomes in immunocompetent tumor-bearing mice and humans have not been investigated. The purpose of this study was to further examine the effects of Mg deficiency (±Mg supplementation) on cisplatin-mediated AKI and tumor killing in immunocompetent mice bearing CT26 colon tumors. Using a model where cisplatin alone (20 mg/kg cumulative dose) produced minimal kidney injury, Mg deficiency significantly worsened cisplatin-mediated AKI, as determined by biochemical markers (blood urea nitrogen and plasma creatinine) and histological renal changes, as well as markers of renal oxidative stress, inflammation, and apoptosis. By contrast, Mg supplementation blocked cisplatin-induced kidney injury. Using LLC-PK1 renal epithelial cells, we observed that Mg deficiency or inhibition of Mg uptake significantly enhanced cisplatin-induced cytotoxicity, whereas Mg supplementation protected against cytotoxicity. However, neither Mg deficiency nor inhibition of Mg uptake impaired cisplatin-mediated killing of CT26 tumor cells in vitro. Mg deficiency was associated with significantly larger CT26 tumors in BALB/c mice when compared with normal-fed control mice, and Mg deficiency significantly reduced cisplatin-mediated tumor killing in vivo. Finally, Mg supplementation did not compromise cisplatin's anti-tumor efficacy in vivo.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Suplementos Nutricionais , Rim/efeitos dos fármacos , Deficiência de Magnésio/tratamento farmacológico , Sulfato de Magnésio/farmacologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/toxicidade , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Células LLC-PK1 , Deficiência de Magnésio/complicações , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Suínos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
3.
Magnes Res ; 33(3): 68-85, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210606

RESUMO

Magnesium (Mg) plays important roles in maintaining genomic stability and cellular redox. Mg also serves as nature's physiological calcium (Ca) channel antagonist, controlling intracellular Ca entry. Because Ca is the most important second messenger, its intracellular concentration is tightly regulated. Excess intracellular Ca can activate aberrant signaling pathways leading to the acquisition of pathological characteristics and cell injury. Several epidemiological studies have linked Mg deficiency (MgD) and increased Ca:Mg ratios with higher incidences of colon cancer and increased mortality. While it is estimated that less than 50% of the US population consumes the recommended daily allowance for Mg, Ca supplementation is widespread. Therefore, we studied the effect of MgD, with variable Ca:Mg ratios on cellular oxidative stress, cell migration, calpain activity, and associated signaling pathways using the CT26 colon cancer cell line. MgD (with Ca:Mg ratios >1) elevated intracellular Ca levels, calpain activity and TRPM7 expression, as well as oxidative stress and cell migration, consistent with observed degradation of full-length E-cadherin, ß-catenin, and N-terminal FAK. MgD was accompanied by enhanced degradation of IκBα and the transactivation domain containing the C-terminus of NF-κB p65 (RelA). MgD-exposed CT26 cells exhibited increased p53 degradation and aneuploidy, markers of genomic instability. By contrast, these pathological changes were not observed when CT26 were cultured under MgD conditions where the Ca:Mg ratio was kept at 1. Together, these data support that exposure of colon cancer cells to MgD with physiological Ca concentrations (or increasing Ca:Mg ratios) leads to the acquisition of a more aggressive, metastatic phenotype.


Assuntos
Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Deficiência de Magnésio/metabolismo , Magnésio/metabolismo , Cálcio/análise , Calpaína/genética , Calpaína/metabolismo , Humanos , Magnésio/análise , Estresse Oxidativo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA