Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Langmuir ; 37(47): 13838-13845, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34788027

RESUMO

A combined experimental and theoretical study of C2H2 and CO2 adsorption and separation was performed in two isostructural molecular porous materials (MPMs): MPM-1-Cl ([Cu2(adenine)4Cl2]Cl2) and MPM-1-TIFSIX ([Cu2(adenine)4(TiF6)2]). It was revealed that MPM-1-Cl displayed higher low-pressure uptake, isosteric heat of adsorption (Qst), and selectivity for C2H2 than CO2, whereas the opposite was observed for MPM-1-TIFSIX. While MPM-1-Cl contains only one type of accessible channel, which has a greater preference toward C2H2, MPM-1-TIFSIX contains three distinct accessible channels, one of which is a confined region between two large channels that represents the primary binding site for both adsorbates. According to molecular simulations, the initial adsorption site in MPM-1-TIFSIX interacts more strongly with CO2 than C2H2, thus explaining the inversion of adsorbate selectivity relative to MPM-1-Cl.

2.
Faraday Discuss ; 231(0): 51-65, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34235530

RESUMO

Carbon dioxide (CO2) is both a primary contributor to global warming and a major industrial impurity. Traditional approaches to carbon capture involve corrosive and energy-intensive processes such as liquid amine absorption. Although adsorptive separation has long been a promising alternative to traditional processes, up to this point there has been a lack of appropriate adsorbents capable of capturing CO2 whilst maintaining low regeneration energies. In the context of CO2 capture, metal-organic frameworks (MOFs) have gained much attention in the past two decades as potential materials. Their tuneable nature allows for precise control over the pore size and chemistry, which allows for the tailoring of their properties for the selective adsorption of CO2. While many candidate materials exist, the amount of research into material shaping for use in industrial processes has been limited. Traditional shaping strategies such as pelletisation involve the use of binders and/or mechanical processes, which can have a detrimental impact on the adsorption properties of the resulting materials or can result in low-density structures with low volumetric adsorption capacities. Herein, we demonstrate the use of a series of monolithic MOFs (monoUiO-66, monoUiO-66-NH2 & monoHKUST-1) for use in gas separation processes.

3.
Angew Chem Int Ed Engl ; 60(19): 10902-10909, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491848

RESUMO

Pyrazine-linked hybrid ultramicroporous (pore size <7 Å) materials (HUMs) offer benchmark performance for trace carbon capture thanks to strong selectivity for CO2 over small gas molecules, including light hydrocarbons. That the prototypal pyrazine-linked HUMs are amenable to crystal engineering has enabled second generation HUMs to supersede the performance of the parent HUM, SIFSIX-3-Zn, mainly through substitution of the metal and/or the inorganic pillar. Herein, we report that two isostructural aminopyrazine-linked HUMs, MFSIX-17-Ni (17=aminopyrazine; M=Si, Ti), which we had anticipated would offer even stronger affinity for CO2 than their pyrazine analogs, unexpectedly exhibit reduced CO2 affinity but enhanced C2 H2 affinity. MFSIX-17-Ni are consequently the first physisorbents that enable single-step production of polymer-grade ethylene (>99.95 % for SIFSIX-17-Ni) from a ternary equimolar mixture of ethylene, acetylene and CO2 thanks to coadsorption of the latter two gases. We attribute this performance to the very different binding sites in MFSIX-17-Ni versus SIFSIX-3-Zn.

4.
Angew Chem Int Ed Engl ; 60(45): 23946-23974, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33783111

RESUMO

At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized, and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.

5.
J Am Chem Soc ; 142(19): 8541-8549, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294384

RESUMO

The environmental benefits of cleaner, gaseous fuels such as natural gas and hydrogen are widely reported. Yet, practical usage of these fuels is inhibited by current gas storage technology. Here, we discuss the wide-ranging potential of gas-fuels to revolutionize the energy sector and introduce the limitations of current storage technology that prevent this transition from taking place. The practical capabilities of adsorptive gas storage using porous, crystalline metal-organic frameworks (MOFs) are examined with regard to recent benchmark results and ultimate storage targets in this field. In particular, the industrial limitations of typically powdered MOFs are discussed while recent breakthroughs in MOF processing are highlighted. We offer our perspective on the future of practical, rather than purely academic, MOF developments in the increasingly critical field of environmental fuel storage.

6.
Small ; 15(22): e1900426, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977961

RESUMO

Metal-organic frameworks (MOFs) can be fine-tuned to boost sorbent-sorbate interactions in order to improve gas sorption and separation performance, but the design of MOFs with ideal structural features for gas separation applications remains a challenge. Herein it is reported that unsaturated alkali metal sites can be immobilized in MOFs through a tetrazole based motif and that gas affinity can thereby be boosted. In the prototypal MOF of this type-NKU-521 (NKU denotes Nankai University), K+ cations are effectively embedded in a trinuclear Co2+ -tetrazole coordination motif. The embedded K+ sites are exposed to the pores of NKU-521 through water removal, and the isosteric heat (Qst ) for CO2 is boosted to 41 kJ mol-1 . The nature of the binding site is validated by molecular simulations and structural characterization. The K+ cations in effect serve as gas traps and boost the CO2 -framework affinity, as measured by the Qst , by 24%. In addition, the impact of unsaturated alkali metal sites upon the separation of hydrocarbons is evaluated for the first time in MOFs using ideal adsorbed solution theory (IAST) calculations and column breakthrough experiments. The results reveal that the presence of exposed K+ sites benefits gas sorption and hydrocarbon separation performances of this MOF.

7.
Inorg Chem ; 58(17): 11553-11560, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398018

RESUMO

In the context of porous crystalline materials toward CO2 separation and capture, a new 2-fold interpenetrated 3D microporous Co-MOF, IITKGP-11 (IITKGP denotes Indian Institute of Technology Kharagpur), has been synthesized consisting of a 1D channel of ∼3.6 × 5.0 Å2 along the [101] direction with a cavity volume of 35.20%. This microporous framework with a BET surface area of 253 m2g-1 shows higher uptake of CO2 (under 1 bar, 3.35 and 2.70 mmol g-1 at 273 and 295 K, respectively), with high separation selectivities for CO2/N2 and CO2/CH4 gas mixtures under ambient conditions as estimated through IAST calculation. Moreover, real time dynamic breakthrough studies reveal the high adsorption selectivity toward CO2 for these binary mixed gases at 295 K and 1 bar. Besides high gas separation selectivity, capacity considerations in mixed gas phases are also important to check the performance of a given adsorbent. CO2 loading amounts in mixed gas phases are quite high as predicted through IAST calculation and experimentally determined from dynamic breakthrough studies. In order to get insight into the phenomena, GCMC simulation was performed demonstrating that the CO2 molecules are electrostatically trapped via interactions between oxygen on CO2 and hydrogen on pyridyl moieties of the spacers.

8.
Angew Chem Int Ed Engl ; 57(13): 3332-3336, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29377460

RESUMO

Removal of CO2 from CO gas mixtures is a necessary but challenging step during production of ultra-pure CO as processed from either steam reforming of hydrocarbons or CO2 reduction. Herein, two hybrid ultramicroporous materials (HUMs), SIFSIX-3-Ni and TIFSIX-2-Cu-i, which are known to exhibit strong affinity for CO2 , were examined with respect to their performance for this separation. The single-gas CO sorption isotherms of these HUMs were measured for the first time and are indicative of weak affinity for CO and benchmark CO2 /CO selectivity (>4000 for SIFSIX-3-Ni). This prompted us to conduct dynamic breakthrough experiments and compare performance with other porous materials. Ultra-pure CO (99.99 %) was thereby obtained from CO gas mixtures containing both trace (1 %) and bulk (50 %) levels of CO2 in a one-step physisorption-based separation process.

9.
Angew Chem Int Ed Engl ; 55(35): 10268-72, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27439315

RESUMO

Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-ß, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-ß is stable to moisture and its separation performance is unaffected by humidity.

10.
Angew Chem Int Ed Engl ; 54(48): 14372-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26440308

RESUMO

Sequestration of CO2, either from gas mixtures or directly from air (direct air capture, DAC), could mitigate carbon emissions. Here five materials are investigated for their ability to adsorb CO2 directly from air and other gas mixtures. The sorbents studied are benchmark materials that encompass four types of porous material, one chemisorbent, TEPA-SBA-15 (amine-modified mesoporous silica) and four physisorbents: Zeolite 13X (inorganic); HKUST-1 and Mg-MOF-74/Mg-dobdc (metal-organic frameworks, MOFs); SIFSIX-3-Ni, (hybrid ultramicroporous material). Temperature-programmed desorption (TPD) experiments afforded information about the contents of each sorbent under equilibrium conditions and their ease of recycling. Accelerated stability tests addressed projected shelf-life of the five sorbents. The four physisorbents were found to be capable of carbon capture from CO2-rich gas mixtures, but competition and reaction with atmospheric moisture significantly reduced their DAC performance.

11.
Chemosphere ; 329: 138531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004818

RESUMO

Water is an essential resource for humans, animals, and plants. Water is also necessary for the manufacture of many products such as milk, textiles, paper, and pharmaceutical composites. During manufacturing, some industries generate a large amount of wastewater containing numerous contaminants. In the dairy industry, for each litre of drinking milk produced, about 10 L of wastewater is generated. Despite this environmental footprint, the production of milk, butter, ice cream, baby formula, etc., are essential in many households. Common contaminants in dairy wastewater include high biological oxygen demand (BOD), chemical oxygen demand (COD), salts as well as nitrogen and phosphorus derivatives. Nitrogen and phosphorus discharges are one of the leading causes in the eutrophication of rivers and oceans. Porous materials have long held significant potential as a disruptive technology for wastewater treatment. However, thus far they have been understudied for use in dairy wastewater treatment. Ordered porous materials, such as zeolites and metal organic frameworks (MOFs), represent classes of porous materials with significant potential for the removal of nitrogen and phosphorus. This review explores the different zeolites and MOFs applied in the removal of nitrogen and phosphorus from wastewater and the prospect of their potential for use in wastewater management in the dairy industry.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Zeolitas , Animais , Humanos , Águas Residuárias , Fósforo , Nitrogênio/análise , Purificação da Água/métodos , Água , Eliminação de Resíduos Líquidos/métodos
12.
Adv Mater ; 35(23): e2209104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919615

RESUMO

Space cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO2 emissions annually. Adsorbent-based HVAC technologies have long been touted as an energy-efficient alternative to traditional refrigeration systems. However, thus far, no suitable adsorbents have been developed which overcome the drawbacks associated with traditional sorbent materials such as silica gels and zeolites. Metal-organic frameworks (MOFs) offer order-of-magnitude improvements in water adsorption and regeneration energy requirements. However, the deployment of MOFs in HVAC applications has been hampered by issues related to MOF powder processing. Herein, three high-density, shaped, monolithic MOFs (UiO-66, UiO-66-NH2 , and Zr-fumarate) with exceptional volumetric gas/vapor uptake are developed-solving previous issues in MOF-HVAC deployment. The monolithic structures across the mesoporous range are visualized using small-angle X-ray scattering and lattice-gas models, giving accurate predictions of adsorption characteristics of the monolithic materials. It is also demonstrated that a fragile MOF such as Zr-fumarate can be synthesized in monolithic form with a bulk density of 0.76 gcm-3 without losing any adsorption performance, having a coefficient of performance (COP) of 0.71 with a low regeneration temperature (≤ 100 °C).

13.
Artigo em Inglês | MEDLINE | ID: mdl-35656844

RESUMO

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

14.
J Mater Chem A Mater ; 9(29): 16006-16015, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34354834

RESUMO

Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance, and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110-114 F g-1 at current densities of 0.04-0.05 A g-1 and a modest rate capability. By directly comparing its performance with the previously reported analogue, Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu3(HHTP)2 in EDLCs, finding a limited stable double-layer voltage window of 1 V and only a modest capacitance retention of 81% over 30 000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.

15.
ACS Appl Mater Interfaces ; 12(37): 41177-41184, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32803939

RESUMO

The stability of microporous metal-organic frameworks (MOFs) in moist environments must be taken into consideration for their practical implementations, which has been largely ignored thus far. Herein, we synthesized a new moisture-stable Zn-MOF, {[Zn2(SDB)2(L)2]·2DMA}n, IITKGP-12, by utilizing a bent organic linker 4,4'-sulfonyldibenzoic acid (H2SDB) containing a polar sulfone group (-SO2) and a N, N-donor spacer (L) with a Brunauer-Emmett-Teller surface area of 216 m2 g-1. This material displays greater CO2 adsorption capacity over N2 and CH4 with high IAST selectivity, which is also validated by breakthrough experiments with longer breakthrough times for CO2. Most importantly, the separation performance is largely unaffected in the presence of moisture of simulated flue gas stream. Temperature-programmed desorption (TPD) analysis shows the ease of the regeneration process, and the performance was verified for multiple cycles. In order to understand the structure-function relationship at the atomistic level, grand canonical Monte Carlo (GCMC) calculation was performed, indicating that the primary binding site for CO2 is between the sulfone moieties in IITKGP-12. CO2 is attracted to the bonded structure (V-shape) of the sulfone moieties in a perpendicular fashion, where CCO2 is aligned with S, and the CO2 axis bisects the SO2 axis. Thus, the strategic approach to immobilize the polar sulfone moiety with a high number of inherent stronger M-N coordination and the absence of coordination unsaturation made this MOF potential toward practical CO2 separation applications.

16.
ACS Appl Mater Interfaces ; 12(30): 33759-33764, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32497420

RESUMO

Physisorbent metal-organic materials (MOMs) have shown benchmark performance for highly selective CO2 capture from bulk and trace gas mixtures. However, gas stream moisture can be detrimental to both adsorbent performance and hydrolytic stability. One of the most effective methods to solve this issue is to transform the adsorbent surface from hydrophilic to hydrophobic. Herein, we present a facile approach for coating MOMs with organic polymers to afford improved hydrophobicity and hydrolytic stability under humid conditions. The impact of gas stream moisture on CO2 capture for the composite materials was found to be negligible under both bulk and trace CO2 capture conditions with significant improvements in regeneration times and energy requirements.

17.
Science ; 366(6462): 241-246, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601769

RESUMO

Purification of ethylene (C2H4), the largest-volume product of the chemical industry, currently involves energy-intensive processes such as chemisorption (CO2 removal), catalytic hydrogenation (C2H2 conversion), and cryogenic distillation (C2H6 separation). Although advanced physisorbent or membrane separation could lower the energy input, one-step removal of multiple impurities, especially trace impurities, has not been feasible. We introduce a synergistic sorbent separation method for the one-step production of polymer-grade C2H4 from ternary (C2H2/C2H6/C2H4) or quaternary (CO2/C2H2/C2H6/C2H4) gas mixtures with a series of physisorbents in a packed-bed geometry. We synthesized ultraselective microporous metal-organic materials that were readily regenerated, including one that was selective for C2H6 over CO2, C2H2, and C2H4.

18.
Sci Adv ; 5(11): eaax9171, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31819904

RESUMO

CO2 accumulation in confined spaces represents an increasing environmental and health problem. Trace CO2 capture remains an unmet challenge because human health risks can occur at 1000 parts per million (ppm), a level that challenges current generations of chemisorbents (high energy footprint and slow kinetics) and physisorbents (poor selectivity for CO2, especially versus water vapor, and/or poor hydrolytic stability). Here, dynamic breakthrough gas experiments conducted upon the ultramicroporous material SIFSIX-18-Ni-ß reveal trace (1000 to 10,000 ppm) CO2 removal from humid air. We attribute the performance of SIFSIX-18-Ni-ß to two factors that are usually mutually exclusive: a new type of strong CO2 binding site and hydrophobicity similar to ZIF-8. SIFSIX-18-Ni-ß also offers fast sorption kinetics to enable selective capture of CO2 over both N2 (S CN) and H2O (S CW), making it prototypal for a previously unknown class of physisorbents that exhibit effective trace CO2 capture under both dry and humid conditions.

19.
Chem Commun (Camb) ; 55(22): 3219-3222, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30806425

RESUMO

Industrial specifications require CO2 concentrations in natural gas below 50 ppm during liquefaction because of corrosion and CO2 freezing. Herein, we report a physisorbent (TIFSIX-3-Ni) that exhibits new benchmark CO2/CH4 selectivity and fast kinetics, thereby enabling one-step LNG processing to CO2 levels of 25 ppm.

20.
Chem Commun (Camb) ; 54(28): 3488-3491, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561019

RESUMO

Phases of a 2-fold pcu hybrid ultramicroporous material (HUM), SIFSIX-14-Cu-i, exhibiting 99%, 93%, 89%, and 70% partial interpenetration have been obtained. 1 : 99 C2H2/C2H4 gas separation studies reveal that as the proportion of interpenetrated component decreases, so does the separation performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA