Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(9): 4112-4125, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971129

RESUMO

The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.


Assuntos
Alquilantes , Alquilação , Cor , DNA , Quadruplex G , Luz , Alquilantes/química , Alquilantes/efeitos da radiação , Alquilação/efeitos dos fármacos , Alquilação/efeitos da radiação , DNA/química , DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Ligantes
2.
Biophys J ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909278

RESUMO

Viscosin is a membrane-permeabilizing, cyclic lipopeptide (CLiP) produced by Pseudomonas species. Here, we have studied four synthetic analogs (L1W, V4W, L5W, L7W), each with one leucine (Leu; L) or valine residue exchanged for tryptophan (Trp; W) by means of time-resolved fluorescence spectroscopy of Trp. To this end, we recorded the average fluorescence lifetime, rotational correlation time and limiting anisotropy, dipolar relaxation time and limiting extent of relaxation, rate constant of acrylamide quenching, effect of H2O-D2O exchange, and time-resolved halfwidth of the spectrum in the absence and presence of POPC liposomes. Structure, localization, and hydration of the peptides were described by molecular dynamics simulations. The combination of the parameters provides a good description of the molecular environments of the Trp positions and the behavior of viscosin as a whole. Of particular value for characterizing the impact of viscosin on the membrane is the dipolar relaxation of Trp4 in V4W, which is deeply embedded in the hydrophobic core. The limiting relaxation level represents the membrane perturbation - unlike typical membrane probes - at the site of the perturbant. Fractions of Trp4 relax at different rates; the one not in contact with water upon excitation relaxes via recruitment of a water molecule on the 10 ns time scale. This rate is sensitive to the concerted membrane perturbation by more than one lipopeptide, which appears at high lipopeptide concentration and is assumed a prerequisite for the final formation of a membrane-permeabilizing defect. Trp7 relaxes primarily with respect to neighboring Ser residues. Trp5 flips between a membrane-inserted and surface-exposed orientation.

3.
Chemistry ; : e202400667, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647356

RESUMO

We previously described NMR based fingerprint matching with peptide backbone resonances as a fast and reliable structural dereplication approach for Pseudomonas cyclic lipodepsipeptides (CLiPs). In combination with total synthesis of a small library of configurational CLiP congeners this also allows unambiguous determination of stereochemistry, facilitating structure-activity relationship studies and enabling three-dimensional structure determination. However, the on-resin macrocycle formation in the synthetic workflow brings considerable burden and limits universal applicability. This drawback is here removed altogether by also transforming the native CLiP into a linearized analogue by controlled saponification of the ester bond. This eliminates the need for macrocycle formation, limiting the synthesis effort to linear peptide analogues. NMR fingerprints of such linear peptide analogues display a sufficiently distinctive chemical shift fingerprint to act as effective discriminators. The approach is developed using viscosin group CLiPs and subsequently demonstrated on putisolvin, leading to a structural revision, and tanniamide from Pseudomonas ekonensis COR58, a newly isolated lipododecapeptide that defines a new group characterized by a ten-residue large macrocycle, the largest to date in the Pseudomonas CLiP portfolio. These examples demonstrate the effectiveness of the saponification- enhanced approach that broadens applicability of NMR fingerprint matching for the determination of the stereochemistry of CLiPs.

4.
Methods ; 218: 189-197, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597698

RESUMO

Oligonucleotides (ODNs) find applications as diagnostic and therapeutic tools due to their unique ability to interact, thanks to Watson-Crick base pairing, with a specific DNA or RNA target strand. Although most of the tools available today rely on mere hydrogen bond formation, chemical modifications to enable covalent interstrand-crosslinking (ICL) have been reported, and are gaining a place under the spotlight as they potentially offer a series of advantages over the state of the art, including a higher potency and selectivity. This methodological paper focuses on the use of a pro-reactive furan moiety and its subsequent oxidation for applications in ODN targeting. The design of effective capture and targeting probes to ensure high ICL yields is discussed and the mechanisms underlying the (photo)chemical oxidation of furan are explained. Furthermore, examples of furan-containing DNAs designed for different applications, including DNA-DNA or DNA-RNA ICL and DNA-peptide/protein targeting, are provided. The paper highlights the advantages of using different oxidative chemical triggers, such as N-bromosuccinimide or singlet oxygen, to offer additional selectivity control over the ICL reaction.


Assuntos
Ácidos Nucleicos , RNA , Oxirredução , Bromosuccinimida , Furanos
5.
Methods ; 218: 210-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604247

RESUMO

While natural oligonucleotides (ONs) are increasingly used as therapeutic and diagnostic tools, they still face certain challenges such as low resistance to enzymatic degradation, potential immunogenicity, and delivery issues, which can limit their applications. Peptide Nucleic Acids (PNAs) are promising alternatives due to their high affinity for DNA and RNA, the high resistance to enzymatic degradation, and the easy introduction of a wide range of potential modifications. Chemical modifications that enable the covalent targeting of specific DNA and RNA strands offer additional advantages, including enhanced potency. The current study focuses on the utilization of furan-PNAs as pro-reactive probe systems and their applications to DNA and RNA targeting. Specifically, in this methodological paper, we provide practical insights into the design, synthesis, and application of furan-containing PNA probes for achieving efficient PNA-DNA and PNA-RNA interstrand crosslinking (ICL), as well as ON-templated PNA-PNA ligation systems. Furthermore, we discuss the applications of these probes in targeting DNA secondary structures, such as G-quadruplexes and i-motifs, target pull-down assays, and on-surface detection.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , RNA , Oligonucleotídeos , Furanos
6.
Biophys J ; 122(6): 950-963, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35927958

RESUMO

Cyclic lipopeptides (CLiPs) have many biological functions, including the selective permeabilization of target membranes, and technical and medical applications. We studied the anionic CLiP viscosin from Pseudomonas along with a neutral analog, pseudodesmin A, and the cationic viscosin-E2K to better understand electrostatic effects on target selectivity. Calcein leakage from liposomes of anionic phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) is measured in comparison with net-neutral phosphatidylcholine by time-resolved fluorescence. By contrast to the typical selectivity of cationic peptides against anionic membranes, we find viscosin more active against PG/PE at 30 µM lipid than viscosin-E2K. At very low lipid concentration, the selectivity is reversed. An equi-activity analysis reveals the reciprocal partition coefficients, 1/K, and the CLiP-to-lipid mole ratio within the membrane as leakage after 1 h reaches 50%, Re50. As expected, 1/K to PG/PE is much lower (higher affinity) for viscosin-E2K (3 µM) than viscosin (15 µM). However, the local damage to the PG/PE membrane caused by a viscosin molecule is much stronger than that of viscosin-E2K. This can be explained by the strong membrane expansion due to PG/viscosin repulsion inducing asymmetry stress between the two leaflets and, ultimately, transient limited leakage at Re50 = 0.08. PG/viscosin-E2K attraction opposes expansion and leakage starts only as the PG charges in the outer leaflet are essentially compensated by the cationic peptide (Re50 = 0.32). In the high-lipid regime (at lipid concentrations cL ≫ 1/K), virtually all CLiP is membrane bound anyway and Re50 governs selectivity, favoring viscosin. In the low-lipid regime at cL ≪ 1/K, virtually all CLiP is in solution, 1/K becomes important and the "cation attacks anionic membrane" selectivity gets restored. Overall, activity and selectivity data can only properly be interpreted if the lipid regime is known and predictions for other lipid concentrations or cell counts require knowledge of 1/K and Re50.


Assuntos
Permeabilidade da Membrana Celular , Peptídeos Cíclicos , Eletricidade Estática , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Lipossomos , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosfatidiletanolaminas
7.
Nucleic Acids Res ; 49(12): 6638-6659, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978760

RESUMO

G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.


Assuntos
Quadruplex G , Oligonucleotídeos/química , Genoma Humano , Humanos , Ligantes , Ácidos Nucleicos Heteroduplexes , Ácidos Nucleicos Peptídicos , Transcriptoma
8.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762605

RESUMO

In Pseudomonas lipopeptides, the D-configuration of amino acids is generated by dedicated, dual-function epimerization/condensation (E/C) domains. The increasing attention to stereochemistry in lipopeptide structure elucidation efforts has revealed multiple examples where epimerization does not occur, even though an E/C-type domain is present. While the origin of the idle epimerization in those E/C-domains remains elusive, epimerization activity has so far shown a binary profile: it is either 'on' (active) or 'off' (inactive). Here, we report the unprecedented observation of an E/C-domain that acts 'on and off', giving rise to the production of two diastereoisomeric lipopeptides by a single non-ribosomal peptide synthetase system. Using dereplication based on solid-phase peptide synthesis and NMR fingerprinting, we first show that the two cyclic lipopeptides produced by Pseudomonas entomophila COR5 correspond to entolysin A and B originally described for P. entomophila L48. Next, we prove that both are diastereoisomeric homologues differing only in the configuration of a single amino acid. This configurational variability is maintained in multiple Pseudomonas strains and typically occurs in a 3:2 ratio. Bioinformatic analysis reveals a possible correlation with the composition of the flanking sequence of the N-terminal secondary histidine motif characteristic for dual-function E/C-type domains. In permeabilization assays, using propidium iodide entolysin B has a higher antifungal activity compared to entolysin A against Botrytis cinerea and Pyricularia oryzae spores. The fact that configurational homologues are produced by the same NRPS system in a Pseudomonas strain adds a new level of structural and functional diversification to those already known from substrate flexibility during the recruitment of the amino acids and fatty acids and underscores the importance of complete stereochemical elucidation of non-ribosomal lipopeptide structures.


Assuntos
Aminoácidos , Antifibrinolíticos , Antifúngicos , Lipopeptídeos
9.
Angew Chem Int Ed Engl ; 62(20): e202302688, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917014

RESUMO

The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.


Assuntos
Ilhotas Pancreáticas , Kisspeptinas , Camundongos , Animais , Humanos , Kisspeptinas/química , Kisspeptinas/metabolismo , Peptídeos/química , Ilhotas Pancreáticas/diagnóstico por imagem , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Imagem Óptica , Aminoácidos/metabolismo
10.
Org Biomol Chem ; 20(2): 464-471, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913461

RESUMO

Recently, the GlyConnect-oxime (GC) protein conjugation strategy was developed to provide a site-selective glycan-based conjugation strategy as an extension to the in-house developed GlycoDelete (GD) technology. GD gives access to glycoproteins with single GlcNAc, LacNAc, or LacNAc-Sia type glycans on their N-glycosylation sites. We have previously shown that these glycans provide a unique handle for site-selective conjugation as they provide a short, homogeneous and hydrophilic link to the protein backbone. GC focused on the use of chemical and chemo-enzymatic pathways for conjugation of a single molecule of interest via oxime formation or reductive amination. In the current work, we explore multicomponent reactions (MCR), namely Ugi and Passerini reactions, for GlycoDelete glycan directed, site-specific protein conjugation (MC-GC). The use of the Ugi and Passerini multicomponent reactions holds the potential of introducing multiple groups of interest in a single reaction step while creating a hydrophilic peptide-like linker.

11.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164045

RESUMO

Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.


Assuntos
DNA/química , Fármacos Fotossensibilizantes/metabolismo , Proteínas/química , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Plant Cell ; 30(10): 2573-2593, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30018157

RESUMO

Small GTP-binding proteins from the ADP-ribosylation factor (ARF) family are important regulators of vesicle formation and cellular trafficking in all eukaryotes. ARF activation is accomplished by a protein family of guanine nucleotide exchange factors (GEFs) that contain a conserved catalytic Sec7 domain. Here, we identified and characterized Secdin, a small-molecule inhibitor of Arabidopsis thaliana ARF-GEFs. Secdin application caused aberrant retention of plasma membrane (PM) proteins in late endosomal compartments, enhanced vacuolar degradation, impaired protein recycling, and delayed secretion and endocytosis. Combined treatments with Secdin and the known ARF-GEF inhibitor Brefeldin A (BFA) prevented the BFA-induced PM stabilization of the ARF-GEF GNOM, impaired its translocation from the Golgi to the trans-Golgi network/early endosomes, and led to the formation of hybrid endomembrane compartments reminiscent of those in ARF-GEF-deficient mutants. Drug affinity-responsive target stability assays revealed that Secdin, unlike BFA, targeted all examined Arabidopsis ARF-GEFs, but that the interaction was probably not mediated by the Sec7 domain because Secdin did not interfere with the Sec7 domain-mediated ARF activation. These results show that Secdin and BFA affect their protein targets through distinct mechanisms, in turn showing the usefulness of Secdin in studies in which ARF-GEF-dependent endomembrane transport cannot be manipulated with BFA.


Assuntos
Arabidopsis/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Ftalazinas/farmacologia , Piperazinas/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldina A/farmacologia , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
13.
Nat Chem Biol ; 15(6): 641-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011214

RESUMO

Clathrin-mediated endocytosis (CME) is a highly conserved and essential cellular process in eukaryotic cells, but its dynamic and vital nature makes it challenging to study using classical genetics tools. In contrast, although small molecules can acutely and reversibly perturb CME, the few chemical CME inhibitors that have been applied to plants are either ineffective or show undesirable side effects. Here, we identify the previously described endosidin9 (ES9) as an inhibitor of clathrin heavy chain (CHC) function in both Arabidopsis and human cells through affinity-based target isolation, in vitro binding studies and X-ray crystallography. Moreover, we present a chemically improved ES9 analog, ES9-17, which lacks the undesirable side effects of ES9 while retaining the ability to target CHC. ES9 and ES9-17 have expanded the chemical toolbox used to probe CHC function, and present chemical scaffolds for further design of more specific and potent CHC inhibitors across different systems.


Assuntos
Derivados de Benzeno/farmacologia , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Arabidopsis , Derivados de Benzeno/química , Cadeias Pesadas de Clatrina/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Tiofenos/farmacologia
14.
Compr Rev Food Sci Food Saf ; 20(4): 3719-3761, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160120

RESUMO

Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.


Assuntos
Bacillus cereus , Doenças Transmitidas por Alimentos , Diarreia , Eméticos , Enterotoxinas , Doenças Transmitidas por Alimentos/epidemiologia , Humanos
15.
J Am Chem Soc ; 142(46): 19622-19630, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166132

RESUMO

In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a ß-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.

16.
Chemistry ; 26(21): 4701-4705, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31997431

RESUMO

Handling of the individual fragments remains a bottleneck in the convergent assembly of peptides. Overlooked since the emergence of ligation chemistries during the past two decades, so-called resin-to-resin transfer reactions (RRTR) are here described as a strategic shortcut in this context. Condensation of the involved moieties at an acceptor resin is facilitated by shuttling peptide segments directly from a donor resin in a one-pot fashion. The straightforward synthesis of a sterically constrained 13-mer peptidosteroid model illustrates the utility of this approach, presenting the first successful application of the RRTR methodology in the field of multivalent design and bioconjugation. Relying on established procedures to generate, monitor and isolate intermediates and products, the solid-phase nature of the entire strategy allows for the fast construction of polypeptide adducts and libraries thereof. As such, a rejuvenated use and new opportunities for RRTR are reported.


Assuntos
Peptídeos/síntese química , Resinas Sintéticas/química , Sequência de Aminoácidos , Peptídeos/química
17.
Nucleic Acids Res ; 46(22): 11671-11686, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30418582

RESUMO

Previous investigations of the impact of an imidazole-tethered thymidine in synthetic DNA duplexes, monitored using UV and NMR spectroscopy, revealed a base context dependent increase in thermal stability of these duplexes and a striking correlation with the imidazolium pKa. Unrestrained molecular dynamics (MD) simulations demonstrated the existence of a hydrogen bond between the imidazolium and the Hoogsteen side of a nearby guanosine which, together with electrostatic interactions, form the basis of the so-called pKa-motif responsible for these duplex-stabilizing and pKa-modulating properties. Here, the robustness and utility of this pKa-motif was explored by introducing multiple imidazole-tethered thymidines at different positions on the same dsDNA duplex. For all constructs, sequence based expectations as to pKa-motif formation were supported by MD simulations and experimentally validated using NOESY. Based on the analysis of the pKa values and melting temperatures, guidelines are formulated to assist in the rational design of oligonucleotides modified with imidazolium-tethered thymidines for increased thermal stability that should be generally applicable, as demonstrated through a triply modified construct. In addition, a proof-of-principle study demonstrating enhanced stability of the l-argininamide binding aptamer modified with an imidazole-tethered thymidine in the presence and absence of ligand, demonstrates its potential for the design of more stable aptamers.


Assuntos
Aptâmeros de Nucleotídeos/química , Imidazóis/química , Oligodesoxirribonucleotídeos/química , Timidina/análogos & derivados , Uridina/análogos & derivados , Aptâmeros de Nucleotídeos/síntese química , Arginina/análogos & derivados , Arginina/química , Sequência de Bases , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/síntese química , Eletricidade Estática , Termodinâmica , Raios Ultravioleta
18.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630547

RESUMO

Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/uso terapêutico , Técnica de Seleção de Aptâmeros/métodos , Humanos , Ligantes , Patologia Molecular/métodos , Técnica de Seleção de Aptâmeros/tendências
19.
Molecules ; 25(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178411

RESUMO

MicroRNAs (miRNAs or miRs) are small noncoding RNAs involved in the fine regulation of post-transcriptional processes in the cell. The physiological levels of these short (20-22-mer) oligonucleotides are important for the homeostasis of the organism, and therefore dysregulation can lead to the onset of cancer and other pathologies. Their importance as biomarkers is constantly growing and, in this context, detection methods based on the hybridization to peptide nucleic acids (PNAs) are gaining their place in the spotlight. After a brief overview of their biogenesis, this review will discuss the significance of targeting miR, providing a wide range of PNA-based approaches to detect them at biologically significant concentrations, based on electrochemical, fluorescence and colorimetric assays.


Assuntos
Biomarcadores/química , MicroRNAs/química , Ácidos Nucleicos Peptídicos/química , Processamento Pós-Transcricional do RNA/genética , Humanos , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/genética
20.
Compr Rev Food Sci Food Saf ; 19(4): 1605-1657, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337102

RESUMO

Bacterial toxins are food safety hazards causing about 10% of all reported foodborne outbreaks in Europe. Pertinent to Gram-positive pathogens, the most relevant toxins are emetic toxin and diarrheal enterotoxins of Bacillus cereus, neurotoxins of Clostridium botulinum, enterotoxin of Clostridium perfringens, and a family of enterotoxins produced by Staphylococcus aureus and some other staphylococci. These toxins are the most important virulence factors of respective foodborne pathogens and a primary cause of the related foodborne diseases. They are proteins or peptides that differ from each other in their size, structure, toxicity, toxicological end points, solubility, and stability, types of food matrix to which they are mostly related to. These differences influence the characteristics of required detection methods. Therefore, detection of these toxins in food samples, or detection of toxin production capacity in the bacterial isolate, remains one of the cornerstones of microbial food analysis and an essential tool in understanding the relevant properties of these toxins. Advanced research has led into new insights of the incidence of toxins, mechanisms of their production, their physicochemical properties, and their toxicological mode of action and dose-response profile. This review focuses on biological, immunological, mass spectrometry, and molecular assays as the most commonly used detection and quantification methods for toxins of B. cereus, C. botulinum, C. perfringens, and S. aureus. Gathered and analyzed information provides a comprehensive blueprint of the existing knowledge on the principles of these assays, their application in food safety, limits of detection and quantification, matrices in which they are applicable, and type of information they provide to the user.


Assuntos
Toxinas Bacterianas/análise , Enterotoxinas/análise , Bactérias Gram-Positivas , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA