Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 75(4): 942-950, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886855

RESUMO

BACKGROUND: Leishmania donovani, a protozoan parasite, is the primary causative agent for visceral leishmaniasis. Toxicity and increased resistance to existing drugs have led to an urgent need for identifying new drugs and drug targets. Understanding the risks and mechanisms of resistance is of great importance. Amphotericin B (AmB) is a polyene antimicrobial, the mainstay therapy for visceral leishmaniasis in several parts of India. OBJECTIVES: In the present study, we established a line of AmB-resistant L. donovani promastigotes in vitro and demonstrated the molecular basis of resistance to AmB. METHODS: AmB-resistant promastigotes were generated and characterized to evaluate the mechanism of resistance to AmB. We examined the sterol composition of the promastigotes and the axenic amastigotes derived from the WT and AmB-resistant promastigotes. The role of the plant-like C-22 desaturase responsible for stigmasterol production was also evaluated in the AmB-resistant strain. RESULTS: The IC50 for resistant cells was four times higher than for the WT. AmB-resistant promastigotes showed an increase in the conversion of ß-sitosterol into stigmasterol. The presence of higher amounts of stigmasterol in resistant promastigotes, as well as in axenic amastigotes, signifies its role in AmB resistance in Leishmania. The resistant strain showed reduced infectivity in vitro. CONCLUSIONS: We have elucidated the mode of action and resistance mechanisms to the drug. However, further work is required to validate the potential role of stigmasterol in resistance and to help develop a diagnostic kit that can assist in diagnosing potentially resistant lines in the field.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Biomarcadores , Humanos , Índia , Leishmaniose Visceral/tratamento farmacológico , Estigmasterol/farmacologia , Estigmasterol/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-29941647

RESUMO

Visceral leishmaniasis is an important public health threat in parts of India. It is caused by a protozoan parasite, Leishmania donovani Currently available drugs manifest severe side effects. Hence, there is a need to identify new drug targets and drugs. Aminoacyl-tRNA synthetases, required for protein synthesis, are known drug targets for bacterial and fungal pathogens. The aim of the present study was to obtain essentiality data for Leishmania donovani leucyl-tRNA synthetase (LdLRS) by gene replacement. Gene replacement studies indicate that this enzyme plays an essential role in the viability of this pathogenic organism and appears to be indispensable for its survival in vitro The heterozygous mutant parasites demonstrated a growth deficit and reduced infectivity in mouse macrophages compared to the wild-type cells. We also report that Leishmania donovani recombinant LRS displayed aminoacylation activity and that the protein localized to both the cytosol and the mitochondrion. A broad-spectrum antifungal, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), was found to inhibit parasite growth in both the promastigote and amastigote stages in vitro as well as in vivo in BALB/c mice. This compound exhibited low toxicity to mammalian cells. AN2690 was effective in inhibiting the aminoacylation activity of the recombinant LdLRS. We provide preliminary chemical validation of LdLRS as a drug target by showing that AN2690 is an inhibitor both of L. donovani LRS and of L. donovani cell growth.


Assuntos
Aminoacil-tRNA Sintetases/genética , Compostos de Boro/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leishmania donovani/efeitos dos fármacos , Parasitos/efeitos dos fármacos , Animais , Linhagem Celular , Citosol/parasitologia , Feminino , Deleção de Genes , Heterozigoto , Leishmania donovani/genética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/parasitologia , Parasitos/genética , Proteínas de Protozoários/genética
3.
J Biol Chem ; 291(34): 17754-71, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382051

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes essential for protein synthesis. Apart from their parent aminoacylation activity, several aaRSs perform non-canonical functions in diverse biological processes. The present study explores the twin attributes of Leishmania tyrosyl-tRNA synthetase (LdTyrRS) namely, aminoacylation, and as a mimic of host CXC chemokine. Leishmania donovani is a protozoan parasite. Its genome encodes a single copy of tyrosyl-tRNA synthetase. We first tested the canonical aminoacylation role of LdTyrRS. The recombinant protein was expressed, and its kinetic parameters were determined by aminoacylation assay. To study the physiological role of LdTyrRS in Leishmania, gene deletion mutations were attempted via targeted gene replacement. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. LdTyrRS appears to be an essential gene as the chromosomal null mutants did not survive. Our data also highlights the non-canonical function of L. donovani tyrosyl-tRNA synthetase. We show that LdTyrRS protein is present in the cytoplasm and exits from the parasite cytoplasm into the extracellular medium. The released LdTyrRS functions as a neutrophil chemoattractant. We further show that LdTyrRS specifically binds to host macrophages with its ELR (Glu-Leu-Arg) peptide motif. The ELR-CXCR2 receptor interaction mediates this binding. This interaction triggers enhanced secretion of the proinflammatory cytokines TNF-α and IL-6 by host macrophages. Our data indicates a possible immunomodulating role of LdTyrRS in Leishmania infection. This study provides a platform to explore LdTyrRS as a potential target for drug development.


Assuntos
Quimiocinas CXC/metabolismo , Leishmania donovani/enzimologia , Leishmaniose Visceral/enzimologia , Macrófagos/metabolismo , Mimetismo Molecular , Proteínas de Protozoários/metabolismo , Tirosina-tRNA Ligase/metabolismo , Motivos de Aminoácidos , Animais , Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/imunologia , Deleção de Genes , Genes Essenciais/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Tirosina-tRNA Ligase/imunologia
4.
J Biol Chem ; 291(3): 1203-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586914

RESUMO

The synthesis of selenocysteine, the 21st amino acid, occurs on its transfer RNA (tRNA), tRNA(Sec). tRNA(Sec) is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase (PSTK) in eukaryotes. The selenium donor, selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase. Selenocysteinyl-tRNA synthase (SepSecS) then uses the O-phosphoseryl-tRNA(Sec) and selenophosphate to form Sec-tRNA(Sec) in eukaryotes. Here, we report the characterization of selenocysteinyl-tRNA synthase from Leishmania donovani. Kinetoplastid SepSecS enzymes are phylogenetically closer to worm SepSecS. LdSepSecS was found to exist as a tetramer. Leishmania SepSecS enzyme was found to be active and able to complement the ΔselA deletion in Escherichia coli JS1 strain only in the presence of archaeal PSTK, indicating the conserved nature of the PSTK-SepSecS pathway. LdSepSecS was found to localize in the cytoplasm of the parasite. Gene deletion studies indicate that Leishmania SepSecS is dispensable for the parasite survival. The parasite was found to encode three selenoproteins, which were only expressed in the presence of SepSecS. Selenoproteins of L. donovani are not required for the growth of the promastigotes. Auranofin, a known inhibitor of selenoprotein synthesis showed the same sensitivity toward the wild-type and null mutants suggesting its effect is not through binding to selenoproteins. The three-dimensional structural comparison indicates that human and Leishmania homologs are structurally highly similar but their association modes leading to tetramerization seem different.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Leishmania donovani/enzimologia , Modelos Moleculares , Proteínas de Protozoários/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Animais , Auranofina/farmacologia , Linhagem Celular , Sequência Conservada , Citoplasma/enzimologia , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/patogenicidade , Macrófagos/parasitologia , Camundongos , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Filogenia , Conformação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Alinhamento de Sequência , Virulência
5.
J Biol Chem ; 289(17): 12096-12108, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24610810

RESUMO

Asparagine is formed by two structurally distinct asparagine synthetases in prokaryotes. One is the ammonia-utilizing asparagine synthetase A (AsnA), and the other is asparagine synthetase B (AsnB) that uses glutamine or ammonia as a nitrogen source. In a previous investigation using sequence-based analysis, we had shown that Leishmania spp. possess asparagine-tRNA synthetase paralog asparagine synthetase A (LdASNA) that is ammonia-dependent. Here, we report the cloning, expression, and kinetic analysis of ASNA from Leishmania donovani. Interestingly, LdASNA was both ammonia- and glutamine-dependent. To study the physiological role of ASNA in Leishmania, gene deletion mutations were attempted via targeted gene replacement. Gene deletion of LdASNA showed a growth delay in mutants. However, chromosomal null mutants of LdASNA could not be obtained as the double transfectant mutants showed aneuploidy. These data suggest that LdASNA is essential for survival of the Leishmania parasite. LdASNA enzyme was recalcitrant toward crystallization so we instead crystallized and solved the atomic structure of its close homolog from Trypanosoma brucei (TbASNA) at 2.2 Å. A very significant conservation in active site residues is observed between TbASNA and Escherichia coli AsnA. It is evident that the absence of an LdASNA homolog from humans and its essentiality for the parasites make LdASNA a novel drug target.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Aspartato-Amônia Ligase/metabolismo , Bactérias/enzimologia , Leishmania donovani/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Animais , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/genética , Sequência de Bases , Primers do DNA , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Frações Subcelulares/enzimologia
6.
Infect Immun ; 83(5): 1853-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690103

RESUMO

Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.


Assuntos
Leishmania donovani/imunologia , Macrófagos/química , Macrófagos/parasitologia , Proteoma/análise , Linhagem Celular , Cromatografia Líquida , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Macrófagos/imunologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
7.
Mol Microbiol ; 91(6): 1227-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24456202

RESUMO

Recently, we reported molecular characterization, localization and functional importance of Arabino-1, 4-lactone oxidase (ALO) enzyme from Leishmania donovani that catalyses the last step in ascorbate biosynthesis pathway. Vitamin C (l-ascorbic acid) is implicated in several crucial physiological processes. To elucidate the biological role of d-arabinono-γ-lactone oxidase in Leishmania, we made L. donovani ALO null mutant (ΔALO) by double targeted gene replacement. This mutant lacked ALO activity, showed transient growth defect and reduced ascorbate levels. ΔALO grown in ascorbate depleted media further enhanced growth defect with no detectable levels of ascorbate, implying that parasites have the ability to scavenge ascorbate. ΔALO mutants showed reduced survival in mouse macrophages and are impaired in their infectivity in vivo. Furthermore, the ΔALO mutant induced production of pro-inflammatory cytokines gamma interferon (IFN-gamma), interleukin-12 (IL-12) and tumour necrosis factor-α (TNF-α) by infected mouse macrophages. These mutants were susceptible to oxidative stresses in vitro as revealed by the decreased survival inside macrophages by increased production of reactive oxygen or nitrogen species. Complementation of the ΔALO mutants restored the phenotypic effects in these parasites. Our description of ALO null mutant parasite that triggers pro-inflammatory host responses provides a novel platform for targeting ALO in anti-parasitic strategies.


Assuntos
Citocinas/metabolismo , Leishmania donovani/enzimologia , Macrófagos/parasitologia , Deleção de Sequência , Desidrogenase do Álcool de Açúcar/metabolismo , Animais , Ácido Ascórbico/metabolismo , Linhagem Celular , Sobrevivência Celular , Teste de Complementação Genética , Leishmania donovani/genética , Leishmania donovani/fisiologia , Camundongos , Desidrogenase do Álcool de Açúcar/genética
8.
Biochim Biophys Acta ; 1824(12): 1342-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22850196

RESUMO

Protozoan parasites of the genus Leishmania are important human pathogens that cycle between an extracellular promastigote stage residing in the sandflies and an intracellular amastigote stage colonizing the phagolysosomal compartment of the mammalian macrophages. Here, we used the isobaric tagging method to quantify the global proteomic differences between the promastigotes and the intracellular amastigotes of three different Leishmania donovani clones derived from the THP-1 human macrophage cell line. We identified a substantial number of differentially modulated proteins involved in nutrient acquisition and energy metabolism, cell motility and cytoskeleton, transport, cell signaling and stress response. Proteins involved in vesicular trafficking and endocytosis like the rab7 GTP binding protein, GTP-binding proteins of the Ras superfamily and developmentally regulated GTP-binding protein 1 revealed enhanced expression and also a putative dynein heavy chain protein was found to be up-regulated in the amastigotes and it probably has a role in cargo transport inside the vesicles. Significantly, in the amastigotes the expression of a protein involved in glucose transport was increased eight to fifteen-fold, whereas concentrations of several proteins associated with cell motility and cytoskeleton were reduced. Thus, the quantitative proteomic analysis of L. donovani isolates sheds light on some novel proteins that may have a role in Leishmania differentiation and intracellular survival.


Assuntos
Leishmania donovani/química , Proteômica/métodos , Proteínas de Protozoários/análise , Metabolismo Energético , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Dobramento de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Células Tumorais Cultivadas
9.
Parasitol Res ; 112(3): 1001-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23242321

RESUMO

Visceral leishmaniasis (VL) remains a major health problem in old world, and India accounts for half of the world burden. The widespread emergence of resistance to standard drug in India poses a major obstacle in the control of leishmaniasis. Post-Kala-Azar dermal leishmaniasis (PKDL) is considered as main source of drug resistance. Experimental data indicate that resistance against newer drugs is also imminent. Therefore, in vitro studies were carried out to test minimum parasiticidal concentration of five conventional and newly introduced anti-leishmanial drugs against 20 field isolates of Leishmania donovani obtained from visceral and post-Kala-Azar dermal leishmaniasis patients of India. Study revealed wide range of variation in minimum inhibitory concentration of sodium antimony gluconate (SAG). PKDL isolates displayed significantly lower susceptibility to SAG and miltefosine than VL isolates with P value of 0.0006 and 0.0243, respectively. All clinical isolates had higher IC(50) value for paromomycin and miltefosine as compared to reference strain indicating their vulnerability to develop unresponsiveness. However, isolates were uniformly susceptible to pentamidine and amphotericin B. The results of gene expression analysis of AQP1 were largely in agreement with phenotypic drug sensitivity results. Interestingly, significant down-regulation of AQP1 was observed in PKDL isolates as compared to VL isolates indicating their increased propensity for drug unresponsiveness. However, no significant difference in mRNA expression of LdMT and LdRos3 gene was found for two groups. The present study unravels valuable baseline scientific data showing variation in the drug susceptibility pattern in the L. donovani isolates. The information might have impact on the management and control of Indian visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Animais , Aquaporina 1/biossíntese , Perfilação da Expressão Gênica , Humanos , Índia , Concentração Inibidora 50 , Leishmania donovani/isolamento & purificação , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária
10.
J Parasit Dis ; 47(3): 644-658, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37520198

RESUMO

Leishmaniasis is one of the major parasitic diseases, caused by obligate intracellular protozoa Leishmania, having high mortality as well as morbidity rate. As there is no human licensed vaccine available against leishmaniasis, chemotherapy remains the major way of combating this disease. Many disadvantages are known to be associated with the current drug regime including severe side effects and toxicity, long duration and expensive treatment, and the emergence of resistance. An alternative approach is being utilized to search for active molecules using natural sources, rather than relying on synthetic drugs. Many plant-derived secondary metabolites like phenolic compounds, steroids, quinones, etc. are being extensively investigated for their anti-leishmanial potential. One such group of complex phenolic compounds are diarylheptanoids. These compounds have been shown to exhibit anti-inflammatory, anti-parasitic, anti-fungal, and other pharmacological activities. In the present study, a set of sixteen tetrahydropyran derivatives including three natural products were obtained in lyophilized form. These compounds with trans-2,6-disubstituted tetrahydropyrans, Diospongin A, Diospongin B (isolated from Dioscorea spongiosa) and Centrolobine (Centrolobium sclerophyllum) as parent compounds were synthesized by the reaction of 1-phenyl-1-triemthylsiloxyethylene with six-membered cyclic hemiacetals in the presence of iodine as a catalyst. All the sixteen synthesized tetrahydropyran derivatives were used for toxicity analysis against L. donovani promastigotes, amastigotes and THP-1-derived human macrophages. IC50 values and selectivity index were calculated for all the compounds. Out of these sixteen, five compounds showed the best effect in vitro in terms of both leishmanicidal activity and non-toxicity to human macrophages.

11.
BMC Genomics ; 13: 621, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23151081

RESUMO

BACKGROUND: Leishmania major, a protozoan parasite, is the causative agent of cutaneous leishmaniasis. Due to the development of resistance against the currently available anti-leishmanial drugs, there is a growing need for specific inhibitors and novel drug targets. In this regards, aminoacyl tRNA synthetases, the linchpins of protein synthesis, have received recent attention among the kinetoplastid research community. This is the first comprehensive survey of the aminoacyl tRNA synthetases, their paralogs and other associated proteins from L. major. RESULTS: A total of 26 aminoacyl tRNA synthetases were identified using various computational and bioinformatics tools. Phylogenetic analysis and domain architectures of the L. major aminoacyl tRNA synthetases suggest a probable archaeal/eukaryotic origin. Presence of additional domains or N- or C-terminal extensions in 11 aminoacyl tRNA synthetases from L. major suggests possibilities such as additional tRNA binding or oligomerization or editing activity. Five freestanding editing domains were identified in L. major. Domain assignment revealed a novel asparagine tRNA synthetase paralog, asparagine synthetase A which has been so far reported from prokaryotes and archaea. CONCLUSIONS: A comprehensive bioinformatic analysis revealed 26 aminoacyl tRNA synthetases and five freestanding editing domains in L. major. Identification of two EMAP (endothelial monocyte-activating polypeptide) II-like proteins similar to human EMAP II-like proteins suggests their participation in multisynthetase complex formation. While the phylogeny of tRNA synthetases suggests a probable archaeal/eukaryotic origin, phylogeny of asparagine synthetase A strongly suggests a bacterial origin. The unique features identified in this work provide rationale for designing inhibitors against parasite aminoacyl tRNA synthetases and their paralogs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Biologia Computacional , Leishmania major/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/classificação , Asparagina/genética , Asparagina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Evolução Molecular , Leishmania major/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Filogenia , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Front Cell Infect Microbiol ; 12: 860058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433496

RESUMO

Intracellular pathogens manipulate the host cell for their own survival by contributing to modifications of host epigenome, and thus, altering expression of genes involved in the pathogenesis. Both ATP-dependent chromatin remodeling complex and histone modifications has been shown to be involved in the activation of IFNγ responsive genes. Leishmania donovani is an intracellular pathogen that causes visceral leishmaniasis. The strategies employed by Leishmania donovani to modulate the host epigenome in order to overcome the host defense for their persistence has been worked out in this study. We show that L. donovani negatively affects BRG1, a catalytic subunit of mammalian SWI/SNF chromatin remodeling complex, to alter IFNγ induced host responses. We observed that L. donovani infection downregulates BRG1 expression both at transcript and protein levels in cells stimulated with IFNγ. We also observed a significant decrease in IFNγ responsive gene, Class II transactivator (CIITA), as well as its downstream genes, MHC-II (HLA-DR and HLA-DM). Also, the occupancy of BRG1 at CIITA promoters I and IV was disrupted. A reversal in CIITA expression and decreased parasite load was observed with BRG1 overexpression, thus, suggesting BRG1 is a potential negative regulator for the survival of intracellular parasites in an early phase of infection. We also observed a decrease in H3 acetylation at the promoters of CIITA, post parasite infection. Silencing of HDAC1, resulted in increased CIITA expression, and further decreased parasite load. Taken together, we suggest that intracellular parasites in an early phase of infection negatively regulates BRG1 by using host HDAC1 for its survival inside the host.


Assuntos
Leishmania donovani , Fatores de Transcrição , Animais , Cromatina , Montagem e Desmontagem da Cromatina , Humanos , Interferon gama/metabolismo , Leishmania donovani/genética , Mamíferos/genética , Regiões Promotoras Genéticas , Células THP-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Front Cell Infect Microbiol ; 12: 961832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061865

RESUMO

LAMP diagnosis of malaria is simple and cost-effective with acceptable sensitivity and specificity as compared to standard diagnostic modules such as microscopy, RDTs and nested PCR, and thus its deployment for onsite screening of malaria in resource-limited regions is under consideration. However, the requirement of an electricity-operated dry bath and bulky read-out unit is still a major concern. In an effort to simplify this limitation, we have developed a portable LAMP device and fluorescence readout unit which can be used in the rapid point-of-care diagnosis of malaria. We have developed a point-of-care diagnostic LAMP device that is easy to operate by a mobile application, and the results can be quantified with a fluorescent readout unit. The diagnostic performance of the device was evaluated in 90 P. falciparum-infected clinical isolates stored at 4°C for 6-7 years and 10 freshly collected isolates from healthy volunteers. The LOD and quantitative ability of LAMP in estimating parasitemia levels were revealed with laboratory-grown P. falciparum strain (3D7). The LAMP assay performed in our device was exclusive for P. falciparum detection with sensitivity and specificity determined to be 98.89% and 100%, respectively, in clinical isolates. The LOD was documented to be 1 parasite/µl at the cut-off ADC value of 20. Parasite density estimated from ADC values showed concordance with microscopically determined parasite density of the cultured P. falciparum 3D7 strain. The LAMP assay performed in our device provides a possible portable platform for its deployment in the point-of-care diagnosis of malaria. Further validation of the quantitative ability of the assay with freshly collected or properly stored clinical samples of known parasitemia is necessary for field applicability.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico , Parasitemia/diagnóstico , Plasmodium falciparum/genética , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
14.
J Biol Chem ; 285(1): 453-63, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19880510

RESUMO

Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.


Assuntos
Leishmania donovani/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Sequência de Aminoácidos , Animais , Southern Blotting , Escherichia coli , Deleção de Genes , Genoma/genética , Humanos , Leishmania donovani/genética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/isolamento & purificação , Parasitos/enzimologia , Parasitos/genética , Filogenia , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Mapeamento por Restrição , Alinhamento de Sequência , Análise de Sequência de DNA
15.
J Immunol ; 183(12): 7719-31, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933862

RESUMO

Resistance of Leishmania donovani to sodium antimony gluconate has become a critical issue in the current, prolonged epidemic in India. Hence, there is an urgent need for a vaccine that is protective against both antimony-susceptible and -resistant strains of L. donovani. The multigene LD1 locus located on chromosome 35 of Leishmania is amplified in approximately 15% of the isolates examined. The open reading frame F (ORFF), a potential vaccine candidate against visceral leishmaniasis, is part of the multigene LD1 locus. ORFF was expressed as a chimeric conjugate of ubiquitin to elicit an Ag-specific cell-mediated immune response. Analysis of the cellular immune responses of ubiquitin-conjugated ORFF (UBQ-ORFF) DNA-immunized, uninfected BALB/c mice demonstrated that the vaccine induced enhanced IFN-gamma-producing CD4(+) and CD8(+) T cells compared with nonubiquitinated ORFF DNA vaccine. Higher levels of IL-12 and IFN-gamma and the low levels of IL-4 and IL-10 further indicated that the immune responses with UBQ-ORFF were mediated toward the Th1 rather than Th2 type. Infection of immunized mice with either the antimony-susceptible (AG83) or -resistant (GE1F8R) L. donovani strain showed that UBQ-ORFF DNA vaccine induced higher protection when compared with ORFF DNA. UBQ-ORFF DNA-immunized and -infected mice showed a significant increase in IL-12 and IFN-gamma and significant down-regulation of IL-10. High levels of production of nitrite and superoxide, two macrophage-derived oxidants that are critical in controlling Leishmania infection, were observed in protected mice. The feasibility of using ubiquitinated-conjugated ORFF DNA vaccine as a promising immune enhancer for vaccination against both antimony-susceptible and -resistant strains of L. donovani is reported.


Assuntos
Antimônio/toxicidade , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/imunologia , Ubiquitina/imunologia , Vacinas de DNA/imunologia , Animais , Antimônio/imunologia , Células Cultivadas , Resistência a Medicamentos/genética , Resistência a Medicamentos/imunologia , Feminino , Predisposição Genética para Doença , Imunidade Celular/genética , Leishmania donovani/genética , Vacinas contra Leishmaniose/administração & dosagem , Vacinas contra Leishmaniose/genética , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Células Th1/imunologia , Células Th1/parasitologia , Ubiquitina/administração & dosagem , Ubiquitina/genética , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
16.
Acta Trop ; 224: 106128, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509454

RESUMO

Visceral leishmaniasis is caused by the protozoan parasite Leishmania donovani. It is a fatal form of leishmaniasis prevalent in Indian subcontinent. Since there are no human licensed vaccines available for leishmaniasis, chemotherapeutic drugs remain the only means for combating parasitic infections. We have earlier identified a total of 26 amino-acyl tRNA synthetases (aaRS) along with five stand-alone editing domains and two aaRS-associated proteins in Leishmania donovani. In addition to their canonical role of tRNA aminoacylation, aaRS have been involved in novel functions by acquiring novel domains during evolution. The aaRS-associated proteins have been reported to be analogous to a human cytokine, EMAP II, as they possess a modified version of the heptapeptide motif responsible for the cytokine activity. In this manuscript, we report the characterization of two L. donovani aminoacyl-tRNA synthetase associated proteins which showed a human chemokine like activity. Both the proteins, L. donovani EMAP-1 and EMAP-2, possess a modified form of the heptapeptide motif, which is responsible for cytokine activity in human EMAP-2. LdEMAP-1 and LdEMAP-2 were cloned, expressed, and purified. Both LdEMAP-1 and LdEMAP-2 proteins in the promastigote stage were found to be localized in cytoplasm as confirmed by immunofluorescence. In case of L. donovani infected human THP-1 derived macrophages, secretion of LdEMAP-1 and LdEMAP-2 proteins in the cytosol of the macrophages was observed. The role of LdEMAP-1 and LdEMAP-2 in the aminoacylation of rLdTyrRS was also tested and LdEMAP-2 but not LdEMAP-1 increased the rate of aminoacylation of tyrosyl tRNA synthetase (rLdTyrRS). L. donovani EMAP-1 and EMAP-2 proteins managed to exhibit the capability of attracting human origin cells as determined by chemotaxis assay, and also were able to induce the secretion of cytokines from macrophages like their human counterpart (EMAP II). Our working hypothesis is that both of these proteins might be involved in helping the parasite to establish the infection within the host.


Assuntos
Aminoacil-tRNA Sintetases , Leishmania donovani , Aminoacil-tRNA Sintetases/genética , Quimiotaxia , Humanos , Monócitos , Proteínas de Protozoários/genética
17.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34635627

RESUMO

L. donovani is an intracellular protozoan parasite, that causes visceral leishmaniasis (VL), and consequently, post-kala azar dermal leishmaniasis (PKDL). Diagnosis and treatment of leishmaniasis is crucial for decreasing its transmission. Various diagnostic techniques like microscopy, enzyme-linked immunosorbent assays (ELISA) and PCR-based methods are used to detect leishmaniasis infection. More recently, loop-mediated isothermal amplification (LAMP) assay has emerged as an ideal diagnostic measure for leishmaniasis, primarily due to its accuracy, speed and simplicity. However, point-of-care diagnosis is still not been tested with the LAMP assay. We have developed a portable LAMP device for the monitoring of Leishmania infection. The LAMP assay performed using our device can detect and amplify as little as 100 femtograms of L. donovani DNA. In a preliminary study, we have shown that the device can also amplify L. donovani DNA present in VL and PKDL patient samples with high sensitivity (100%), specificity (98%) and accuracy (99%), and can be used both for diagnostic and prognostic analysis. To our knowledge, this is the first report to describe the development and application of a portable LAMP device which has the potential to evolve as a point-of-care diagnostic and prognostic tool for Leishmania infections in future.


Assuntos
Leishmaniose/diagnóstico , Leishmaniose/parasitologia , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Estudos de Casos e Controles , DNA de Protozoário/genética , Desenho de Equipamento , Fluorescência , Humanos , Leishmania donovani/genética , Hanseníase/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Carga Parasitária , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
18.
Antimicrob Agents Chemother ; 54(6): 2507-16, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20368397

RESUMO

Arylimidamides (AIAs) represent a new class of molecules that exhibit potent antileishmanial activity (50% inhibitory concentration [IC(50)], <1 microM) against both Leishmania donovani axenic amastigotes and intracellular Leishmania, the causative agent for human visceral leishmaniasis (VL). A systematic lead discovery program was employed to characterize in vitro and in vivo antileishmanial activities, pharmacokinetics, mutagenicities, and toxicities of two novel AIAs, DB745 and DB766. They were exceptionally active (IC(50) < or = 0.12 microM) against intracellular L. donovani, Leishmania amazonensis, and Leishmania major and did not exhibit mutagenicity in an Ames screen. DB745 and DB766, given orally, produced a dose-dependent inhibition of liver parasitemia in two efficacy models, L. donovani-infected mice and hamsters. Most notably, DB766 (100 mg/kg of body weight/day for 5 days) reduced liver parasitemia in mice and hamsters by 71% and 89%, respectively. Marked reduction of parasitemia in the spleen (79%) and bone marrow (92%) of hamsters was also observed. Furthermore, these compounds distributed to target tissues (liver and spleen) and had a moderate oral bioavailability (up to 25%), a large volume of distribution, and an elimination half-life ranging from 1 to 2 days in mice. In a repeat-dose toxicity study of mice, there was no indication of liver or kidney toxicity for DB766 from serum chemistries, although mild hepatic cell eosinophilia, hypertrophy, and fatty changes were noted. These results demonstrated that arylimidamides are a promising class of molecules that possess good antileishmanial activity and desirable pharmacokinetics and should be considered for further preclinical development as an oral treatment for VL.


Assuntos
Amidinas/farmacologia , Antiprotozoários/farmacologia , Furanos/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Amidinas/farmacocinética , Amidinas/toxicidade , Animais , Antiprotozoários/farmacocinética , Antiprotozoários/toxicidade , Disponibilidade Biológica , Cricetinae , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Furanos/farmacocinética , Furanos/toxicidade , Humanos , Técnicas In Vitro , Leishmania donovani/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Fígado/parasitologia , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Testes de Mutagenicidade , Parasitemia/tratamento farmacológico , Testes de Sensibilidade Parasitária , Baço/parasitologia , Distribuição Tecidual
19.
J Antimicrob Chemother ; 65(3): 496-507, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20067981

RESUMO

OBJECTIVES: Clinical resistance to pentavalent antimonials results from an interplay between uptake, efflux and sequestration in Leishmania. Aquaglyceroporins (AQPs) have been shown to facilitate uptake of trivalent metalloids. Down-regulation of AQP1 in Leishmania results in resistance to trivalent antimony, whereas overexpression of AQP1 in drug-resistant parasites can reverse the resistance. The present work investigates the role of AQP1 in monitoring antimonial resistance in Indian leishmaniasis. METHODS AND RESULTS: Susceptibility to trivalent antimony as determined in vitro with intracellular amastigotes from both visceral leishmaniasis (VL) and post-kala-azar dermal leishmaniasis (PKDL) patients correlated well with the clinical response. Higher accumulation of trivalent antimony (SbIII) was observed in all susceptible isolates compared with resistant isolates. Reduced accumulation of SbIII correlated, with a few exceptions, with down-regulation of AQP1 RNA as determined by real-time PCR. Cloning and sequencing of the AQP1 gene from both VL and PKDL isolates showed sequence variation in four of the clinical isolates. None of the isolates had an alteration of Glu152 and Arg230, which have been previously shown to affect metalloid transport. Transfection of the AQP1 gene in a sodium antimony gluconate-resistant field isolate conferred susceptibility to the resistant isolate. CONCLUSIONS: Our studies indicate genetic variation in VL and PKDL isolates. Down-regulation of AQP1 correlates well with clinical drug resistance in a majority of Indian VL and PKDL isolates. AQP1 gene expression at both the genetic and transcriptional level showed positive correlation with SbIII accumulation, with some exceptions.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Aquaporina 1/biossíntese , Resistência a Medicamentos , Leishmania donovani/genética , Proteínas de Protozoários/biossíntese , Sequência de Aminoácidos , Aquaporina 1/genética , DNA de Protozoário/química , DNA de Protozoário/genética , Perfilação da Expressão Gênica , Genes de Protozoários , Humanos , Índia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Testes de Sensibilidade Parasitária , Reação em Cadeia da Polimerase , Polimorfismo Genético , Proteínas de Protozoários/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Transfecção
20.
Amino Acids ; 38(2): 509-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19997759

RESUMO

Alkylation of ethyl N-hydroxyacetimidate with readily available methanesulfonates of functionally substituted alcohols and subsequent deprotection of aminooxy group is a novel and convenient method to prepare functionally substituted esters of hydroxylamine with high overall yield. This approach is a good alternative to well-known reaction of N-hydroxyphthalimide with alcohols under the Mitsunobu conditions. The properties of ethoxyethylidene protection of aminooxy group on the contrary to that of N-alkoxyphthalimide group allow to perform a wide spectra of the transformations in the radical of N-protected hydroxylamine derivatives. This is essential for synthetic strategies consisting in the introduction of N-protected aminooxy group at one of the first steps of synthesis and subsequent transformations of the radical.The inhibitory effect of one of the newly synthesized compound, 1-guanidinooxy-3-aminopropane (GAPA), was compared with that of well-known inhibitors of ornithine decarboxylase namely, alpha-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA) on Leishmania donovani, a protozoan parasite that causes visceral leishmaniasis. GAPA, on the contrary with APA and DFMO, in micromolar concentrations, inhibited the growth of both amastigotes and promastigotes of sodium antimony gluconate-resistant forms of L. donovani.


Assuntos
Ésteres/química , Ésteres/farmacologia , Hidroxilamina/síntese química , Hidroxilamina/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Ésteres/síntese química , Humanos , Hidroxilamina/química , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Propilaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA