Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555732

RESUMO

The synthesis of silver nanoparticles using biogenic methods, particularly plants, has led to the discovery of several effective nanoparticles. In many instances, plant-derived silver nanoparticles have been shown to have more activity than the plant extract which was used to synthesize the nanoparticles. Silver nanoparticles have been successfully synthesized using the medicinal plant, Cotyledon orbiculata. This is a shrub found in the Western Cape province of South Africa. It has a long history of use in traditional medicine in the treatment of wounds and skin infections. The C. orbiculata synthesized silver nanoparticles (Cotyledon-AgNPs) were reported to have good antimicrobial and anti-inflammatory activities; however, their wound-healing properties have not been determined. This study aimed to determine the wound healing activity of Cotyledon-AgNPs using the scratch assay. Gene expression studies were also done to determine the nanoparticles' mechanism of action. The Cotyledon-AgNPs showed good antioxidant, growth-promoting and cell migration properties. Gene expression studies showed that the C. orbiculata water extract and Cotyledon-AgNPs promoted wound healing by upregulating genes involved in cell proliferation, migration and growth while downregulating pro-inflammatory genes. This confirms, for the first time that a water extract of C. orbiculata and silver nanoparticles synthesized from this extract are good wound-healing agents.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/farmacologia , Prata/farmacologia , Cotilédone , Cicatrização , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia
2.
J Nanobiotechnology ; 17(1): 122, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842876

RESUMO

Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modification or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specificity and unsustainable weight loss effects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side effects, and enhanced efficacy. These effects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbidities.


Assuntos
Fármacos Antiobesidade/química , Portadores de Fármacos/química , Nanopartículas/química , Obesidade/tratamento farmacológico , Indutores da Angiogênese/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Liberação Controlada de Fármacos , Ouro/química , Humanos , Lipídeos/química , Polímeros/química , Nanomedicina Teranóstica , Resultado do Tratamento
3.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986733

RESUMO

There is growing interest in the use of green synthesized silver nanoparticles (AgNPs) to control and prevent dental diseases. The incorporation of green synthesized AgNPs into dentifrices to reduce pathogenic oral microbes is motivated by their presumed biocompatibility and broad-spectrum antimicrobial activity. In the present study, gum arabic AgNPs (GA-AgNPs) were formulated into a toothpaste (TP) using a commercial TP at a non-active concentration, to produce GA-AgNPs_TP. The TP was selected after evaluating the antimicrobial activity of four commercial TPs 1-4 on selected oral microbes using agar disc diffusion and microdilution assays. The less active TP-1 was then used in the formulation of GA-AgNPs_TP-1; thereafter, the antimicrobial activity of GA-AgNPs_0.4g was compared to GA-AgNPs_TP-1. The cytotoxicity of GA-AgNPs_0.4g and GA-AgNPs_TP-1 was also assessed on the buccal mucosa fibroblast (BMF) cells using the MTT assay. The study demonstrated that antimicrobial activity of GA-AgNPs_0.4g was retained after being combined with a sub-lethal or inactive concentration of TP-1. The non-selective antimicrobial activity and cytotoxicity of both GA-AgNPs_0.4g and GA-AgNPs_TP-1 was demonstrated to be time and concentration dependent. These activities were instant, reducing microbial and BMF cell growth in less than one hour of exposure. However, the use of dentifrice commonly takes 2 min and rinsed off thereafter, which could prevent damage to the oral mucosa. Although, GA-AgNPs_TP-1 has a good prospect as a TP or oral healthcare product, more studies are required to further improve the biocompatibility of this formulation.

4.
J Pharm Anal ; 13(11): 1235-1251, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38174117

RESUMO

Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.

5.
J Biomol Struct Dyn ; 40(2): 875-885, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32924825

RESUMO

The health sector has been on the race to find a potent therapy for coronavirus disease (COVID)-19, a diseases caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2. Repurposed anti-viral drugs have played a huge role in combating the virus, and most recently, dexamethasone (Dex) have shown its therapeutic activity in severe cases of COVID-19 patients. The study sought to provide insights on the anti-COVID-19 mechanism of Dex at both atomic and molecular level against SARS-CoV-2 targets. Computational methods were employed to predict the binding affinity of Dex to SARS-CoV-2 using the Schrodinger suite (v2020-2). The target molecules and ligand (Dex) were retrieved from PDB and PubChem, respectively. The selected targets were SARS-CoV-2 main protease (Mpro), and host secreted molecules glucocorticoid receptor, and Interleukin-6 (IL-6). Critical analyses such as Protein and ligand preparation, molecular docking, molecular dynamic (MD) simulations, and absorption, distribution, metabolism, excretion (ADME), and toxicity analyses were performed using the targets and the ligand as inputs. Dex showed stronger affinity to its theoretical (glucocorticoid) receptor with a superior docking score of -14.7 and a good binding energy value of -147.48 kcal/mol; while short hydrogen bond distances were observed in both Mpro and IL-6 when compared to glucocorticoid receptor. Based on these findings, Dex-target complexes were used to perform MD simulations to analyze Dex stability at 50 ns. This study demonstrates that Dex could bind to both the viral and host receptors as a potential drug candidate for COVID-19. To ascertain the biological fitness of this study, other SARS-CoV-2 targets should be explored. Also, the in vitro studies of dexamethasone against several SARS-CoV-2 targets warrant further investigation.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Dexametasona/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases
6.
J Biomol Struct Dyn ; 40(8): 3416-3427, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200673

RESUMO

The exponential increase in cases and mortality of coronavirus disease (COVID-19) has called for a need to develop drugs to treat this infection. Using in silico and molecular docking approaches, this study investigated the inhibitory effects of Pradimicin A, Lamivudine, Plerixafor and Lopinavir against SARS-CoV-2 Mpro. ADME/Tox of the ligands, pharmacophore hypothesis of the co-crystalized ligand and the receptor, and docking studies were carried out on different modules of Schrodinger (2019-4) Maestro v12.2. Among the ligands subjected to ADME/Tox by QikProp, Lamivudine demonstrated drug-like physico-chemical properties. A total of five pharmacophore binding sites (A3, A4, R9, R10, and R11) were predicted from the co-crystalized ligand and the binding cavity of the SARS-CoV-2 Mpro. The docking result showed that Lopinavir and Lamivudine bind with a higher affinity and lower free energy than the standard ligand having a glide score of -9.2 kcal/mol and -5.3 kcal/mol, respectively. Plerixafor and Pradimicin A have a glide score of -3.7 kcal/mol and -2.4 kcal/mol, respectively, which is lower than the co-crystallized ligand with a glide score of -5.3 kcal/mol. Molecular dynamics confirmed that the ligands maintained their interaction with the protein with lower RMSD fluctuations over the trajectory period of 100 nsecs and that GLU166 residue is pivotal for binding. On the whole, present study specifies the repurposing aptitude of these molecules as inhibitors of SARS-CoV-2 Mpro with higher binding scores and forms energetically stable complexes with Mpro.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Compostos Heterocíclicos , Proteases 3C de Coronavírus , Mobilização de Células-Tronco Hematopoéticas , Humanos , Lamivudina , Ligantes , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2
7.
Biomedicines ; 10(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359308

RESUMO

Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.

8.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065254

RESUMO

Cotyledon orbiculata, commonly known as pig's ear, is an important medicinal plant of South Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses, inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles, particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The AgNPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secretion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and anti-inflammation properties.

9.
Pharmaceutics ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834210

RESUMO

Antimicrobial resistance (AMR) is a significant threat to global health. The conventional antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but only a fraction of these have been approved for clinical trials. Their clinical applications are limited to topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life, and rapid renal clearance. To circumvent these challenges and improve AMP's efficacy, different approaches such as peptide chemical modifications and the development of AMP delivery systems have been employed. Nanomaterials have been shown to improve the activity of antimicrobial drugs by providing support and synergistic effect against pathogenic microbes. This paper describes the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.

10.
Plants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34961106

RESUMO

In Africa, medicinal plants have been traditionally used as a source of medicine for centuries. To date, African medicinal plants continue to play a significant role in the treatment of wounds. Chronic wounds are associated with severe healthcare and socio-economic burdens despite the use of conventional therapies. Emergence of novel wound healing strategies using medicinal plants in conjunction with nanotechnology has the potential to develop efficacious wound healing therapeutics with enhanced wound repair mechanisms. This review identified African medicinal plants and biogenic nanoparticles used to promote wound healing through various mechanisms including improved wound contraction and epithelialization as well as antibacterial, antioxidant and anti-inflammatory activities. To achieve this, electronic databases such as PubMed, Scifinder® and Google Scholar were used to search for medicinal plants used by the African populace that were scientifically evaluated for their wound healing activities in both in vitro and in vivo models from 2004 to 2021. Additionally, data on the wound healing mechanisms of biogenic nanoparticles synthesized using African medicinal plants is included herein. The continued scientific evaluation of wound healing African medicinal plants and the development of novel nanomaterials using these plants is imperative in a bid to alleviate the detrimental effects of chronic wounds.

11.
Artif Cells Nanomed Biotechnol ; 49(1): 614-625, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590509

RESUMO

Green nanotechnology stands amongst the leading giants of innovation for the twenty first century technological advances. More interesting, is the use of natural products as reducing agents. These could be recyclable materials from fruits and vegetables to produce nanoparticles (NPs) with novel properties. In the current study, silver NPs (AgNPs) were synthesized using the water extracts from the peel and flesh of two Pyrus communis L. cultivars, namely, the Forelle (Red) Pears (RPE) and Packham Triumph (Green) Pears (GPE). The AgNPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), High Resolution Transmission Electron Microscopy (HRTEM) and Fourier Transform Infra-Red Spectroscopy (FTIR). The antibacterial activities of the AgNPs were evaluated using agar well diffusion and microdilution assays. The cytotoxicity of the AgNPs was investigated on a rat macrophage (RAW 264.7) cells using MTT assay. Both the RPE and GPE were capable of synthesizing the AgNPs at high temperatures (70 and 100 °C). The AgNPs exhibited antibacterial activity against the test strains, and also had low toxicity towards the RAW 264.7 cells. Thus, the synthesized AgNPs have a potentially viable use in bio-applications for treatment of bacterial infections.


Assuntos
Prata
12.
Sci Rep ; 11(1): 19707, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611250

RESUMO

Dengue poses a global health threat, which will persist without therapeutic intervention. Immunity induced by exposure to one serotype does not confer long-term protection against secondary infection with other serotypes and is potentially capable of enhancing this infection. Although vaccination is believed to induce durable and protective responses against all the dengue virus (DENV) serotypes in order to reduce the burden posed by this virus, the development of a safe and efficacious vaccine remains a challenge. Immunoinformatics and computational vaccinology have been utilized in studies of infectious diseases to provide insight into the host-pathogen interactions thus justifying their use in vaccine development. Since vaccination is the best bet to reduce the burden posed by DENV, this study is aimed at developing a multi-epitope based vaccines for dengue control. Combined approaches of reverse vaccinology and immunoinformatics were utilized to design multi-epitope based vaccine from the sequence of DENV. Specifically, BCPreds and IEDB servers were used to predict the B-cell and T-cell epitopes, respectively. Molecular docking was carried out using Schrödinger, PATCHDOCK and FIREDOCK. Codon optimization and in silico cloning were done using JCAT and SnapGene respectively. Finally, the efficiency and stability of the designed vaccines were assessed by an in silico immune simulation and molecular dynamic simulation, respectively. The predicted epitopes were prioritized using in-house criteria. Four candidate vaccines (DV-1-4) were designed using suitable adjuvant and linkers in addition to the shortlisted epitopes. The binding interactions of these vaccines against the receptors TLR-2, TLR-4, MHC-1 and MHC-2 show that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, DV-1 has a better binding energies of - 60.07, - 63.40, - 69.89 kcal/mol against MHC-1, TLR-2, and TLR-4, with respect to the other vaccines. All the designed vaccines were highly antigenic, soluble, non-allergenic, non-toxic, flexible, and topologically assessable. The immune simulation analysis showed that DV-1 may elicit specific immune response against dengue virus. Moreover, codon optimization and in silico cloning validated the expressions of all the designed vaccines in E. coli. Finally, the molecular dynamic study shows that DV-1 is stable with minimum RMSF against TLR4. Immunoinformatics tools are now applied to screen genomes of interest for possible vaccine target. The designed vaccine candidates may be further experimentally investigated as potential vaccines capable of providing definitive preventive measure against dengue virus infection.


Assuntos
Biologia Computacional/métodos , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Epitopos/química , Epitopos/imunologia , Modelos Moleculares , Vacinologia/métodos , Sequência de Aminoácidos , Antígenos Virais , Fenômenos Químicos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Engenharia Genética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Desenvolvimento de Vacinas
13.
Diagnostics (Basel) ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34441287

RESUMO

The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.

14.
Nanoscale Res Lett ; 16(1): 174, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34866165

RESUMO

The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infections and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clinically used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration (FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interestingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems could potentially be used alone or in combination with the conventional systems to improve their efficacy.

15.
Biotechnol Rep (Amst) ; 29: e00602, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732631

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is one of the most cancer-related mortalities worldwide and remains a major public health issue. Despite several attempts to develop promising therapies for CRC, its survival rate decreases with metastasis. Cyclin-dependent kinases (CDKs) are a family of protein kinases with various regulatory activities including cell cycle, mRNA expression, transcription, and differentiation. Aside from their role in cell proliferation when mutated, abnormal expression of these genes has been reported in some human cancer subtypes. This study explored the roles and therapeutic potentials of CDK 1 and 4 as prognostic biomarkers in CRC. METHODS: Bioinformatics analyses were carried out to demonstrate the expression and prognostic values of CDK-1 and CDK-4 with immune infiltrate in CRC. DISCUSSION: CDK levels in CRC were remarkably higher than those in normal tissues (p < 0.05), and overexpression in CRC tissues was significantly related to nodal metastatic status (p < 0.05) and histological subtypes. Kaplan-Meier analyses showed that patients with CRC who exhibited CDK-1 overexpression had worse overall survival (OS) as against patients with CDK-4 overexpression. The alteration observed was a mutation while the mutation hotspots include E163* and R24A/C/H/L respectively for CDK-1 and CDK-4 on the Pkinase domain. Of the associated genes, AURKA and RB1 were predominantly altered. Furthermore, CDK-4 is positively correlated with tumor purity in both COAD and READ while CDK-1is only positively correlated in COAD. CDK-1 overexpression was significantly associated with poor prognosis as opposed to CDK-4. CONCLUSION: The expression and prognostic values of AURKA and RB1 may also be significant to CRC diagnosis. CDKs together with the co-expressed genes and their association with immune infiltrates may serve as target molecules for immunotherapy in CRC.

16.
Sci Rep ; 10(1): 12415, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709962

RESUMO

Obesity is a chronic disease that negatively affects life expectancy through its association with life-threatening diseases such as cancer and cardiovascular diseases. Expression proteomics combined with in silico interaction studies are used to uncover potential biomarkers and the pathways that promote obesity-related complications. These biomarkers can either aid in the development of personalized therapies or identify individuals at risk of developing obesity-related diseases. To determine the serum protein changes, Wistar rats were fed standard chow (low fat, LF), or chow formulated high fat (HF) diets (HF1, HF2 and HF3) for 8 and 42 weeks to induce obesity. Serum samples were collected from lean and obese rats at these time points. The serum samples were precipitated using trichloroacetic acid (TCA)/acetone and analyzed by 2-Dimensional SDS-PAGE. Serum protein profiles were examined using mass spectrometry (MS)-based proteomics and validated by western blotting. Protein-protein interactions among the selected proteins were studied in silico using bioinformatics tools. Several proteins showed differences in expression among the three HF diets when compared to the LF diet, and only proteins with ≥ twofold expression levels were considered differentially expressed. Apolipoprotein-AIV (APOA4), C-reactive protein (CRP), and alpha 2-HS glycoprotein (AHSG) showed differential expression at both 8 and 42 weeks, whereas alpha 1 macroglobulin (AMBP) was differentially expressed only at 8 weeks. Network analysis revealed some interactions among the proteins, an indication that these proteins might interactively play a crucial role in development of obesity-induced diseases. These data show the variation in the expression of serum proteins during acute and chronic exposure to high fat diet. Based on the expression and the in-silico interaction these proteins warrant further investigation for their role in obesity development.


Assuntos
Proteínas Sanguíneas/metabolismo , Obesidade/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/análise , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , Obesidade/sangue , Obesidade/complicações , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica , Ratos , Fatores de Risco
17.
Oncotarget ; 11(46): 4306-4324, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245732

RESUMO

The involvement of non-coding RNAs (ncRNAs) in cellular physiology and disease pathogenesis is becoming increasingly relevant in recent years specifically in cancer research. Breast cancer (BC) has become a health concern and accounts for most of the cancer-related incidences and mortalities reported amongst females. In spite of the presence of promising tools for BC therapy, the mortality rate of metastatic BC cases is still high. Therefore, the genomic exploration of the BC subtype and the use of ncRNAs for possible regulation is pivotal. The expression and prognostic values of AURKA gene were assessed by Oncomine, GEPIA, KM-plotter, and bc-GenExMiner v4.4, respectively. Associated proteins and functional enrichment were evaluated by Cytoscape and DAVID databases. Additionally, molecular docking approach was employed to investigate the regulatory role of hsa-miR-32-3p assisted argonaute (AGO) protein of AURKA gene in BC. AURKA gene was highly expressed in patients with BC relative to normal counterpart and significantly correlated with poor survival. The docking result suggested that AURKA could be regulated by hsa-miR-32-3p as confirmed by the reported binding energy and specific interactions. The study gives some insights into role of AURKA and its regulation by microRNAs through AGO protein. It also provides exciting opportunities for cancer therapeutic intervention.

18.
J Int Med Res ; 48(8): 300060520949077, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32842818

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) in December 2019 has resulted in over 20 million cases and 741,808 deaths globally, affecting more than 200 countries. COVID-19 was declared a pandemic on 11 March 2020 by the World Health Organization. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). There is limited information on COVID-19, and treatment has so far focused on supportive care and use of repurposed drugs. COVID-19 can be transmitted via person-to-person contact through droplet spread. Some of the recommended precautionary measures to reduce the rate of disease spread include social distancing, good hygiene practices, and avoidance of crowded areas. These measures are effective because the droplets are heavy and can only travel approximately 1 meter in the air, settling quickly on fixed surfaces. Promising strategies to combat SARS-CoV-2 include discovery of therapeutic targets/drugs and vaccines. In this review, we summarize the epidemiology, pathophysiology, and diagnosis of COVID-19. We also address the mechanisms of action of approved repurposed drugs for therapeutic management of the disease.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/patogenicidade , COVID-19/epidemiologia , COVID-19/terapia , Controle de Doenças Transmissíveis/organização & administração , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Fatores Etários , Alanina/análogos & derivados , Alanina/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , COVID-19/diagnóstico , COVID-19/fisiopatologia , Cloroquina/uso terapêutico , Controle de Doenças Transmissíveis/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/fisiopatologia , Reposicionamento de Medicamentos , Humanos , Incidência , Equipamento de Proteção Individual/provisão & distribuição , Distanciamento Físico , Pneumonia Viral/diagnóstico , Pneumonia Viral/fisiopatologia , Quarentena/métodos , Quarentena/organização & administração , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Sobrevida
19.
Int J Nanomedicine ; 13: 7915-7929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538468

RESUMO

Obesity is a global epidemic that poses a serious health concern due to it being a risk factor for life-threatening chronic diseases, such as type 2 diabetes, cancer, and cardiovascular diseases. Pharmacotherapy remains the mainstay for the management of obesity; however, its usefulness is limited due to poor drug efficacy, non-specificity and toxic side effects. Therefore, novel approaches that could provide insights into obesity and obesity-associated diseases as well as development of novel anti-obesity treatment modalities or improvement on the existing drugs are necessary. While the ideal treatment of obesity should involve early intervention in susceptible individuals, targeted nanotherapy potentially provides a fresh perspective that might be better than the current conventional therapies. Independent studies have shown improved drug efficacy by using prohibitin (PHB)-targeted therapy in obese rodents and non-human primates, thus providing a proof of concept that targeted nanotherapy can be a feasible treatment for obesity. This review presents a brief global survey of obesity, its impact on human health, its current treatment and their limitations, and the role of angiogenesis and PHB in the development of obesity. Finally, the role and potential use of nanotechnology coupled with targeted drug delivery in the treatment of obesity are discussed.


Assuntos
Vasos Sanguíneos/patologia , Nanopartículas/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/uso terapêutico , Humanos , Nanotecnologia , Neovascularização Fisiológica , Obesidade/fisiopatologia , Proibitinas , Proteínas Repressoras/metabolismo
20.
Int J Nanomedicine ; 13: 2551-2559, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731630

RESUMO

BACKGROUND: Obesity is a worldwide epidemic affecting millions of people. The current pharmacological treatment of obesity remains limited and ineffective due to drugs' undesirable side effects. Hence, there is a need for novel or improved strategies for long-term therapies that will help prevent the disease progression into other chronic diseases. Nanotechnology holds the future for the treatment of obesity because of its versatility, as shown by improved drug efficiency and safety in cancer clinical trials. Nano-based drug delivery systems could potentially do the same for obesity through targeted drug delivery. This study investigated the use of peptide-functionalized quantum dots (QDs) for the imaging of prohibitin (PHB)-expressing cells in vitro and in diet-induced obese rats, which could potentially be used as nanocarriers of antiobesity drugs. METHODS: Cadmium (Cd)-based QDs were functionalized with an adipose homing peptide (AHP) and injected intravenously into lean and obese Wistar rats. Biodistribution of the QDs was analyzed by an IVIS® Lumina XR imaging system and inductively coupled plasma optical emission spectroscopy (ICP-OES). For in vitro studies, PHB-expressing (Caco-2 and MCF-7) and non-PHB-expressing (KMST-6 and CHO) cells were exposed to either unfunctionalized QDs (QD625) or AHP-functionalized QDs (AHP-QD625) and analyzed by fluorescence microscopy. RESULTS: AHP-QD625 accumulated significantly in PHB-expressing cells in vitro when compared with non-PHB-expressing cells. In vivo data indicated that QD625 accumulated mainly in the reticuloendothelial system (RES) organs, while the AHP-QD625 accumulated mostly in the white adipose tissues (WATs). CONCLUSION: AHP-functionalized QDs were successfully and selectively delivered to the PHB-expressing cells in vitro (Caco-2 and MCF-7 cells) and in the WAT vasculature in vivo. This nanotechnology-based approach could potentially be used for dual targeted drug delivery and molecular imaging of adipose tissues in obese patients in real time.


Assuntos
Obesidade/diagnóstico por imagem , Peptídeos/química , Pontos Quânticos/química , Proteínas Repressoras/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/administração & dosagem , Células CHO , Células CACO-2 , Cádmio/química , Cricetulus , Dieta Hiperlipídica/efeitos adversos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Microscopia de Fluorescência , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Obesidade/etiologia , Peptídeos/metabolismo , Proibitinas , Pontos Quânticos/metabolismo , Pontos Quânticos/uso terapêutico , Ratos Wistar , Proteínas Repressoras/análise , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA