Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069435

RESUMO

The need for prehospital hemostatic dressings that exert an antibacterial effect is of interest for prolonged field care. Here, we consider a series of antibacterial and zeolite formulary treatment approaches applied to a cotton-based dressing. The design of the fabric formulations was based on the hemostatic dressing TACGauze with zeolite Y incorporated as a procoagulant with calcium and pectin to facilitate fiber adherence utilizing silver nanoparticles, and cellulose-crosslinked ascorbic acid to confer antibacterial activity. Infra-red spectra were employed to characterize the chemical modifications on the dressings. Contact angle measurements were employed to document the surface hydrophobicity of the cotton fabric which plays a role in the contact activation of the coagulation cascade. Ammonium Y zeolite-treated dressings initiated fibrin equal to the accepted standard hemorrhage control dressing and showed similar improvement with antibacterial finishes. The antibacterial activity of cotton-based technology utilizing both citrate-linked ascorbate-cellulose conjugate analogs and silver nanoparticle-embedded cotton fibers was observed against Staphylococcus aureus and Klebsiella pneumoniae at a level of 99.99 percent in the AATCC 100 assay. The hydrogen peroxide levels of the ascorbic acid-based fabrics, measured over a time period from zero up to forty-eight hours, were in line with the antibacterial activities.


Assuntos
Hemostáticos , Nanopartículas Metálicas , Zeolitas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Zeolitas/farmacologia , Hemostáticos/farmacologia , Ácido Ascórbico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fibra de Algodão , Bandagens , Celulose/química
2.
J Exp Bot ; 67(18): 5461-5471, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27567364

RESUMO

Some naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood. In this study, we show that both the brown colour and enhanced FR of the Lc1 lint colour locus are linked to a 1.4Mb inversion on chromosome A07 that is immediately upstream of a gene with similarity to Arabidopsis TRANSPARENT TESTA 2 (TT2). As a result of the alternative upstream sequence, the transcription factor GhTT2_A07 is highly up-regulated in developing fibres. In turn, genes in the phenylpropanoid metabolic pathway are activated, leading to biosynthesis of proanthocyanidins and accumulation of inorganic elements. We show that enhanced FR and anthocyanin precursors appear in developing brown fibres well before the brown colour is detectible, demonstrating for the first time that the polymerized proanthocyanidins that constitute the brown colour are not the source of enhanced FR. Identifying the particular colourless metabolite that provides Lc1 cotton with enhanced FR could help minimize the use of synthetic chemical flame retardant additives in textiles.


Assuntos
Fibra de Algodão , Retardadores de Chama/metabolismo , Genes de Plantas/fisiologia , Gossypium/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Mapeamento Cromossômico , Cor , Perfilação da Expressão Gênica , Genes de Plantas/genética , Gossypium/fisiologia , Fenótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Transcriptoma
3.
PLoS One ; 18(1): e0278696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652412

RESUMO

Textiles made from cotton fibers are flammable and thus often include flame retardant additives for consumer safety. Transgressive segregation in multi-parent populations facilitates new combinations of alleles of genes and can result in traits that are superior to those of any of the parents. A screen of 257 recombinant inbred lines from a multi-parent advanced generation intercross (MAGIC) population for naturally enhance flame retardance (FR) was conducted. All eleven parents, like all conventional white fiber cotton cultivars produce flammable fabric. MAGIC recombinant inbred lines (RILs) that produced fibers with significantly lower heat release capacities (HRC) as measured by microscale combustion calorimetry (MCC) were identified and the stability of the phenotypes of the outliers were confirmed when the RILs were grown at an additional location. Of the textiles fabricated from the five superior RILs, four exhibited the novel characteristic of inherent flame resistance. When exposed to open flame by standard 45° incline flammability testing, these four fabrics self-extinguished. To determine the genetic architecture of this novel trait, linkage, epistatic and multi-locus genome wide association studies (GWAS) were conducted with 473k SNPs identified by whole genome sequencing (WGS). Transcriptomes of developing fiber cells from select RILs were sequenced (RNAseq). Together, these data provide insight into the genetic mechanism of the unexpected emergence of flame-resistant cotton by transgressive segregation in a breeding program. The incorporation of this trait into global cotton germplasm by breeding has the potential to greatly reduce the costs and impacts of flame-retardant chemicals.


Assuntos
Retardadores de Chama , Estudo de Associação Genômica Ampla , Epistasia Genética , Têxteis , Fibra de Algodão , Calorimetria
4.
J Agric Food Chem ; 65(7): 1443-1455, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28121438

RESUMO

The pecan nut is a nutrient-rich part of a healthy diet full of beneficial fatty acids and antioxidants, but can also cause allergic reactions in people suffering from food allergy to the nuts. The transcriptome of a developing pecan nut was characterized to identify the gene expression occurring during the process of nut development and to highlight those genes involved in fatty acid metabolism and those that commonly act as food allergens. Pecan samples were collected at several time points during the embryo development process including the water, gel, dough, and mature nut stages. Library preparation and sequencing were performed using Illumina-based mRNA HiSeq with RNA from four time points during the growing season during August and September 2012. Sequence analysis with Trinotate software following the Trinity protocol identified 133,000 unigenes with 52,267 named transcripts and 45,882 annotated genes. A total of 27,312 genes were defined by GO annotation. Gene expression clustering analysis identified 12 different gene expression profiles, each containing a number of genes. Three pecan seed storage proteins that commonly act as allergens, Car i 1, Car i 2, and Car i 4, were significantly up-regulated during the time course. Up-regulated fatty acid metabolism genes that were identified included acyl-[ACP] desaturase and omega-6 desaturase genes involved in oleic and linoleic acid metabolism. Notably, a few of the up-regulated acyl-[ACP] desaturase and omega-6 desaturase genes that were identified have expression patterns similar to the allergen genes based upon gene expression clustering and qPCR analysis. These findings suggest the possibility of coordinated accumulation of lipids and allergens during pecan nut embryogenesis.


Assuntos
Alérgenos/genética , Carya/embriologia , Carya/genética , Metabolismo dos Lipídeos , RNA de Plantas/genética , Alérgenos/metabolismo , Carya/metabolismo , RNA de Plantas/metabolismo , Estações do Ano , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA