Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Infect Control ; 52(7): 849-851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583778

RESUMO

Experimental evidence suggests that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains viable within aerosols with a half-life of approximately 3 hours; however, it remains unclear how long airborne SARS-CoV-2 can transmit infection. Whole genome sequencing during an outbreak suggested in-room transmission of SARS-CoV-2 to two patients admitted nearly 2 and 5 hours, respectively, after discharge of an asymptomatic infected patient. These findings suggest that airborne SARS-CoV-2 may transmit infection for over 4 hours, even in a hospital setting.


Assuntos
COVID-19 , SARS-CoV-2 , Sequenciamento Completo do Genoma , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Aerossóis , Genoma Viral , Fatores de Tempo , Masculino , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Microbiologia do Ar , Pessoa de Meia-Idade
2.
JAMA Netw Open ; 5(6): e2216176, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675074

RESUMO

Importance: Aerosol-borne SARS-CoV-2 has not been linked specifically to nosocomial outbreaks. Objective: To explore the genomic concordance of SARS-CoV-2 from aerosol particles of various sizes and infected nurses and patients during a nosocomial outbreak of COVID-19. Design, Setting, and Participants: This cohort study included patients and nursing staff in a US Department of Veterans Affairs inpatient hospital unit and long-term-care facility during a COVID-19 outbreak between December 27, 2020, and January 8, 2021. Outbreak contact tracing was conducted using exposure histories and screening with reverse transcriptase-polymerase chain reaction (RT-PCR) for SARS-CoV-2. Size-selective particle samplers were deployed in diverse clinical areas of a multicampus health care system from November 2020 to March 2021. Viral genomic sequences from infected nurses and patients were sequenced and compared with ward nurses station aerosol samples. Exposure: SARS-CoV-2. Main Outcomes and Measures: The primary outcome was positive RT-PCR results and genomic similarity between SARS-CoV-2 RNA in aerosols and human samples. Air samplers were used to detect SARS-CoV-2 RNA in aerosols on hospital units where health care personnel were or were not under routine surveillance for SARS-CoV-2 infection. Results: A total of 510 size-fractionated air particle samples were collected. Samples representing 3 size fractions (>10 µm, 2.5-10 µm, and <2.5 µm) obtained at the nurses station were positive for SARS-CoV-2 during the outbreak (3 of 30 samples [10%]) and negative during 9 other collection periods. SARS-CoV-2 partial genome sequences for the smallest particle fraction were 100% identical with all 3 human samples; the remaining size fractions shared >99.9% sequence identity with the human samples. Fragments of SARS-CoV-2 RNA were detected by RT-PCR in 24 of 300 samples (8.0%) in units where health care personnel were not under surveillance and 7 of 210 samples (3.3%; P = .03) where they were under surveillance. Conclusions and Relevance: In this cohort study, the finding of genetically identical SARS-CoV-2 RNA fragments in aerosols obtained from a nurses station and in human samples during a nosocomial outbreak suggests that aerosols may have contributed to hospital transmission. Surveillance, along with ventilation, masking, and distancing, may reduce the introduction of community-acquired SARS-CoV-2 into aerosols on hospital wards, thereby reducing the risk of hospital transmission.


Assuntos
COVID-19 , Infecção Hospitalar , Postos de Enfermagem , Aerossóis , COVID-19/epidemiologia , Estudos de Coortes , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Surtos de Doenças , Hospitais , Humanos , RNA Viral , SARS-CoV-2/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA