Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 474(7350): 225-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654807

RESUMO

Induced pluripotent stem cells (iPSCs) are generated from somatic cells by the transgenic expression of three transcription factors collectively called OSK: Oct3/4 (also called Pou5f1), Sox2 and Klf4. However, the conversion to iPSCs is inefficient. The proto-oncogene Myc enhances the efficiency of iPSC generation by OSK but it also increases the tumorigenicity of the resulting iPSCs. Here we show that the Gli-like transcription factor Glis1 (Glis family zinc finger 1) markedly enhances the generation of iPSCs from both mouse and human fibroblasts when it is expressed together with OSK. Mouse iPSCs generated using this combination of transcription factors can form germline-competent chimaeras. Glis1 is enriched in unfertilized oocytes and in embryos at the one-cell stage. DNA microarray analyses show that Glis1 promotes multiple pro-reprogramming pathways, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal-epithelial transition. These results therefore show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation.


Assuntos
Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Perfilação da Expressão Gênica , Genes myc/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog , Técnicas de Transferência Nuclear , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Proto-Oncogene Mas , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/metabolismo
2.
Dev Cell ; 7(1): 33-44, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15239952

RESUMO

Spatiotemporal control of the Ras/ERK MAP kinase signaling pathway is among the key mechanisms for regulating a wide variety of cellular processes. In this study, we report that human Sef (hSef), a recently identified inhibitor whose action mechanism has not been fully defined, acts as a molecular switch for ERK signaling by specifically blocking ERK nuclear translocation without inhibiting its activity in the cytoplasm. Thus, hSef binds to activated forms of MEK, inhibits the dissociation of the MEK-ERK complex, and blocks nuclear translocation of activated ERK. Consequently, hSef inhibits phosphorylation and activation of the nuclear ERK substrate Elk-1, while it does not affect phosphorylation of the cytoplasmic ERK substrate RSK2. Downregulation of endogenous hSef by hSef siRNA enhances the stimulus-induced ERK nuclear translocation and the activity of Elk-1. These results thus demonstrate that hSef acts as a spatial regulator for ERK signaling by targeting ERK to the cytoplasm.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Interleucina/metabolismo , Proteínas ras/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Núcleo Celular/enzimologia , Chlorocebus aethiops , Citoplasma/enzimologia , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , MAP Quinase Quinase 1 , Fosforilação , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Interleucina/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Elk-1 do Domínio ets
3.
Development ; 134(15): 2751-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17611221

RESUMO

Preimplantation development is a crucial step for successful implantation and pregnancy. Although both compaction and blastocyst formation have been extensively studied, mechanisms regulating the early cell division stages before compaction have remained unclear. Here, we show that extracellular signal regulated kinase (ERK) mitogen-activated protein (MAP) kinase function is required for early embryonic cell division before compaction. Our analysis demonstrates that inhibition of ERK activation in late two-cell-stage embryos leads to a reversible arrest in the G2 phase at the four-cell stage. The G2-arrested four-cell-stage embryos showed weakened cell-cell adhesion as compared with control embryos. Remarkably, microarray analyses showed that most of the programmed changes of upregulated and downregulated gene expression during the four- to eight-cell stages proceeded normally in four-cell-stage-arrested embryos that were subsequently released to resume development; however, the expression profiles of a proportion of genes in these embryos closely paralleled the stages of embryonic rather than normal development. These parallel genes included the genes encoding intercellular adhesion molecules, whose expression appeared to be positively regulated by the ERK pathway. We also show that, whereas ERK inactivation in eight-cell-stage embryos did not lead to cell division arrest, it did cause this arrest when cadherin-mediated cell-cell adhesion was disrupted. These results demonstrate an essential role of ERK function in two-cell to eight-cell-stage embryos, and suggest a loose parallelism between the gene expression programs and the developmental stages before compaction.


Assuntos
Desenvolvimento Embrionário/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Animais , Benzamidas/farmacologia , Butadienos/farmacologia , Células Cultivadas , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Nitrilas/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Gravidez , Proteínas Elk-1 do Domínio ets/metabolismo
5.
Development ; 132(8): 1773-83, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15772134

RESUMO

Mammalian preimplantation development involves several crucial events, such as compaction and blastocyst formation, but little is known about essential genes that regulate this developmental process. Here, we have focused on MAP kinase signaling pathways as potential regulatory pathways for the process. Our results show that inhibition of the JNK pathway or of the p38 MAP kinase pathway, but not of the ERK pathway, results in inhibition of cavity formation, and that JNK and p38 are active during mouse preimplantation development. Our subsequent microarray analyses show that, of about 39,000 transcripts analyzed, the number of those genes whose expression level is sensitive to the inhibition of the JNK or the p38 pathway, but insensitive to the inhibition of the ERK pathway, is only 156. Moreover, of the 156 genes, expression of 10 genes (two genes upregulated and eight genes downregulated) is sensitive to either inhibition of the JNK or p38 pathways. These 10 genes include several genes known for their function in axis and pattern formation. Downregulation of some of the 10 genes simultaneously using siRNA leads to abnormality in cavity formation. Thus, this study has successfully narrowed down candidate genes of interest, detailed analysis of which will probably lead to elucidation of the molecular mechanism of preimplantation development.


Assuntos
Blastocisto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Primers do DNA , Genes/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Biol Chem ; 277(40): 37783-7, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12151396

RESUMO

Mitogen-activated protein kinases (MAPKs) regulate a wide variety of cellular functions by phosphorylating their specific substrates. Here we have identified Tob as a novel substrate of MAPK. Tob, a member of the Tob and B-cell translocation gene anti-proliferative protein family, is shown to negatively regulate the proliferation of osteoblasts and T cells. In this study, our two-hybrid screening has identified Tob as an ERK2-interacting protein. Biochemical analyses have then shown that ERK MAPK (ERK2) and JNK/SAPK (JNK2) bind to and phosphorylate Tob in vitro. ERK catalyzes the phosphorylation more efficiently than JNK. When the ERK pathway is activated in cells, phosphorylation of Tob is induced. An ERK-binding or -docking site locates in the N-terminal portion of Tob, and phosphorylation sites reside in the C-terminal stretch region. The docking is crucial for efficient phosphorylation. Mutant forms of Tob, in which serines are replaced by glutamic acids to mimic phosphorylation, show a much reduced ability to inhibit the cell cycle progression to S phase from G(0)/G(1) phase, as compared with wild-type Tob, indicating that ERK phosphorylation negatively regulates the anti-proliferative function of Tob.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Supressoras de Tumor , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Proteínas de Transporte/genética , Divisão Celular , Clonagem Molecular , Primers do DNA , Genes Supressores de Tumor , Humanos , Proteína Quinase 9 Ativada por Mitógeno , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Exp Cell Res ; 295(1): 59-65, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15051490

RESUMO

Tob, a member of the Tob and BTG antiproliferative protein family, plays an important role in many cellular processes including cell proliferation. In this study, we have addressed molecular mechanisms regulating subcellular localization of Tob. Treatment with leptomycin B, an inhibitor of nuclear export signal (NES) receptor, resulted in a change in subcellular distribution of Tob from its pan-cellular distribution to nuclear accumulation, indicating the existence of NES in Tob. Our results have then identified an N-terminal region (residues 2-14) of Tob as a functional NES. They have also shown that Tob has a functional, bipartite nuclear localization signal (NLS) in residues 18-40. Thus, Tob is shuttling between the nucleus and the cytoplasm by its NES and NLS. To examine a possible relationship between subcellular distribution of Tob and its function, we exogenously added a strong NLS sequence or a strong NES sequence or both to Tob. The obtained results have demonstrated that the strong NLS-added Tob has a much weaker activity to inhibit cell cycle progression from G0/G1 to S phase. These results suggest that cytoplasmic localization or nucleocytoplasmic shuttling is important for the antiproliferative function of Tob.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Supressoras de Tumor , Células 3T3 , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Primers do DNA , Biblioteca Gênica , Genes Supressores de Tumor , Vetores Genéticos , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA