Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Pathol ; 260(2): 112-123, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807305

RESUMO

Multiple myeloma (MM) remains an incurable haematological malignancy despite substantial advances in therapy. Hypoxic bone marrow induces metabolic rewiring in MM cells contributing to survival and drug resistance. Therefore, targeting metabolic pathways may offer an alternative treatment option. In this study, we repurpose two FDA-approved drugs, syrosingopine and metformin. Syrosingopine was used as a dual inhibitor of monocarboxylate transporter 1 and 4 (MCT1/4) and metformin as an inhibitor for oxidative phosphorylation (OXPHOS). Anti-tumour effects were evaluated for single agents and in combination therapy. Survival and expression data for MCT1/MCT4 were obtained from the Total Therapy 2, Mulligan, and Multiple Myeloma Research Foundation cohorts. Cell death, viability, and proliferation were measured using Annexin V/7-AAD, CellTiterGlo, and BrdU, respectively. Metabolic effects were assessed using Seahorse Glycolytic Rate assays and LactateGlo assays. Differential protein expression was determined using western blotting, and the SUnSET method was implemented to quantify protein synthesis. Finally, the syngeneic 5T33MMvv model was used for in vivo analysis. High-level expression of MCT1 and MCT4 both correlated with a significantly lower overall survival of patients. Lactate production as well as MCT1/MCT4 expression were significantly upregulated in hypoxia, confirming the Warburg effect in MM. Dual inhibition of MCT1/4 with syrosingopine resulted in intracellular lactate accumulation and reduced cell viability and proliferation. However, only at higher doses (>10 µm) was syrosingopine able to induce cell death. By contrast, combination treatment of syrosingopine with metformin was highly cytotoxic for MM cell lines and primary patient samples and resulted in a suppression of both glycolysis and OXPHOS. Moreover, pathway analysis revealed an upregulation of the energy sensor p-AMPKα and more downstream a reduction in protein synthesis. Finally, the combination treatment resulted in a significant reduction in tumour burden in vivo. This study proposes an alternative combination treatment for MM and provides insight into intracellular effects. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Antineoplásicos , Metformina , Mieloma Múltiplo , Humanos , Metformina/farmacologia , Mieloma Múltiplo/metabolismo , Antineoplásicos/farmacologia , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Linhagem Celular Tumoral
2.
J Pathol ; 259(1): 69-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245401

RESUMO

While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called ß-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the ß2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the ß2 -adrenergic receptor (ß2 AR) using either selective or non-selective ß-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the ß2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of ß1 -adrenergic receptors. Combining ß2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of ß2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective ß-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/uso terapêutico , Transdução de Sinais , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Apoptose
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055096

RESUMO

Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.


Assuntos
Células Dendríticas/imunologia , Imunoterapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Animais , Antígenos de Neoplasias , Biomarcadores , Vacinas Anticâncer , Plasticidade Celular/imunologia , Tomada de Decisão Clínica , Terapia Combinada , Células Dendríticas/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunomodulação , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/mortalidade , Resultado do Tratamento , Vacinação
4.
Haematologica ; 105(3): 784-795, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31289205

RESUMO

Multiple myeloma (MM) account for approximately 10% of hematological malignancies and is the second most common hematological disorder. Kinases inhibitors are widely used and their efficiency for the treatment of cancers has been demonstrated. Here, in order to identify kinases of potential therapeutic interest for the treatment of MM, we investigated the prognostic impact of the kinome expression profile in large cohorts of patients. We identified 36 kinome-related genes significantly linked with a prognostic value to MM, and built a kinome index based on their expression. The Kinome Index (KI) is linked to prognosis, proliferation, differentiation, and relapse in MM. We then tested inhibitors targeting seven of the identified protein kinas-es (PBK, SRPK1, CDC7-DBF4, MELK, CHK1, PLK4, MPS1/TTK) in human myeloma cell lines. All tested inhibitors significantly reduced the viability of myeloma cell lines, and we confirmed the potential clinical interest of three of them on primary myeloma cells from patients. In addition, we demonstrated their ability to potentialize the toxicity of conventional treatments, including Melphalan and Lenalidomide. This highlights their potential beneficial effect in myeloma therapy. Three kinases inhibitors (CHK1i, MELKi and PBKi) overcome resistance to Lenalidomide, while CHK1, PBK and DBF4 inhibitors re-sensitize Melphalan resistant cell line to this conventional therapeutic agent. Altogether, we demonstrate that kinase inhibitors could be of therapeutic interest especially in high-risk myeloma patients defined by the KI. CHEK1, MELK, PLK4, SRPK1, CDC7-DBF4, MPS1/TTK and PBK inhibitors could represent new treatment options either alone or in combination with Melphalan or IMiD for refractory/relapsing myeloma patients.


Assuntos
Mieloma Múltiplo , Proteínas de Ciclo Celular , Humanos , Fatores Imunológicos , Lenalidomida , Melfalan , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases/genética
5.
Br J Cancer ; 120(12): 1137-1146, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31089208

RESUMO

BACKGROUND: The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL. METHODS: The expression and prognostic value of Cdc20 and Cdh1 was investigated using GEP data and immunohistochemistry. Moreover, the therapeutic potential of APC/C targeting was evaluated using the small-molecule inhibitor proTAME and the underlying mechanisms of action were investigated by western blot. RESULTS: We demonstrated that Cdc20 is highly expressed in DLBCL and aggressive MCL, correlating with a poor prognosis in DLBCL. ProTAME induced a prolonged metaphase, resulting in accumulation of the APC/C-Cdc20 substrate cyclin B1, inactivation/degradation of Bcl-2 and Bcl-xL and caspase-dependent apoptosis. In addition, proTAME strongly enhanced the anti-lymphoma effect of the clinically relevant agents doxorubicin and venetoclax. CONCLUSION: We identified for the first time APC/C as a new, promising target in DLBCL and MCL. Moreover, we provide evidence that Cdc20 might be a novel, independent prognostic factor in DLBCL and MCL.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma de Célula do Manto/tratamento farmacológico , Pró-Fármacos/farmacologia , Tosilarginina Metil Éster/farmacologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/biossíntese , Antígenos CD/genética , Apoptose/efeitos dos fármacos , Caderinas/biossíntese , Caderinas/genética , Proteínas Cdc20/biossíntese , Proteínas Cdc20/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Terapia de Alvo Molecular , Prognóstico , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Tumorais Cultivadas
6.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650020

RESUMO

BACKGROUND: Immunotherapy emerged as a promising treatment option for multiple myeloma (MM) patients. However, therapeutic efficacy can be hampered by the presence of an immunosuppressive bone marrow microenvironment including myeloid cells. S100A9 was previously identified as a key regulator of myeloid cell accumulation and suppressive activity. Tasquinimod, a small molecule inhibitor of S100A9, is currently in a phase Ib/IIa clinical trial in MM patients (NCT04405167). We aimed to gain more insights into its mechanisms of action both on the myeloma cells and the immune microenvironment. METHODS: We analyzed the effects of tasquinimod on MM cell viability, cell proliferation and downstream signaling pathways in vitro using RNA sequencing, real-time PCR, western blot analysis and multiparameter flow cytometry. Myeloid cells and T cells were cocultured at different ratios to assess tasquinimod-mediated immunomodulatory effects. The in vivo impact on immune cells (myeloid cell subsets, macrophages, dendritic cells), tumor load, survival and bone disease were elucidated using immunocompetent 5TMM models. RESULTS: Tasquinimod treatment significantly decreased myeloma cell proliferation and colony formation in vitro, associated with an inhibition of c-MYC and increased p27 expression. Tasquinimod-mediated targeting of the myeloid cell population resulted in increased T cell proliferation and functionality in vitro. Notably, short-term tasquinimod therapy of 5TMM mice significantly increased the total CD11b+ cells and shifted this population toward a more immunostimulatory state, which resulted in less myeloid-mediated immunosuppression and increased T cell activation ex vivo. Tasquinimod significantly reduced the tumor load and increased the trabecular bone volume, which resulted in prolonged overall survival of MM-bearing mice in vivo. CONCLUSION: Our study provides novel insights in the dual therapeutic effects of the immunomodulator tasquinimod and fosters its evaluation in combination therapy trials for MM patients.


Assuntos
Reabsorção Óssea , Mieloma Múltiplo , Quinolonas , Animais , Camundongos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proliferação de Células , Imunossupressores/farmacologia , Mieloma Múltiplo/patologia , Células Mieloides/metabolismo , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Quinolonas/metabolismo , Microambiente Tumoral , Humanos
7.
Exp Hematol Oncol ; 11(1): 49, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050788

RESUMO

Cancer cells are well-known for their capacity to adapt their metabolism to their increasing energy demands which is necessary for tumor progression. This is no different for Multiple Myeloma (MM), a hematological cancer which develops in the bone marrow (BM), whereby the malignant plasma cells accumulate and impair normal BM functions. It has become clear that the hypoxic BM environment contributes to metabolic rewiring of the MM cells, including changes in metabolite levels, increased/decreased activity of metabolic enzymes and metabolic shifts. These adaptations will lead to a pro-tumoral environment stimulating MM growth and drug resistance In this review, we discuss the identified metabolic changes in MM and the BM microenvironment and summarize how these identified changes have been targeted (by inhibitors, genetic approaches or deprivation studies) in order to block MM progression and survival.

8.
Front Oncol ; 12: 979569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059621

RESUMO

Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called 'epimutations' have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.

9.
Front Immunol ; 13: 1016059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304465

RESUMO

The success of immunotherapeutic approaches in hematological cancers is partially hampered by the presence of an immunosuppressive microenvironment. Myeloid-derived suppressor cells (MDSC) are key components of this suppressive environment and are frequently associated with tumor cell survival and drug resistance. Based on their morphology and phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC (PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both characterized by their immunosuppressive function. The phenotype, function and prognostic value of MDSC in hematological cancers has been intensively studied; however, the therapeutic targeting of this cell population remains challenging and needs further investigation. In this review, we will summarize the prognostic value of MDSC and the different attempts to target MDSC (or subtypes of MDSC) in hematological cancers. We will discuss the benefits, challenges and opportunities of using MDSC-targeting approaches, aiming to enhance anti-tumor immune responses of currently used cellular and non-cellular immunotherapies.


Assuntos
Neoplasias Hematológicas , Células Supressoras Mieloides , Neoplasias , Humanos , Prognóstico , Monócitos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patologia , Microambiente Tumoral
10.
Front Cell Dev Biol ; 10: 879057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757005

RESUMO

Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Subsets of patients have high-risk features linked with dismal outcome. Therefore, the need for effective therapeutic options remains high. Here, we used bio-informatic tools to identify novel targets involved in DNA repair and epigenetics and which are associated with high-risk myeloma. The prognostic significance of the target genes was analyzed using publicly available gene expression data of MM patients (TT2/3 and HM cohorts). Hence, protein arginine methyltransferase 5 (PRMT5) was identified as a promising target. Druggability was assessed in OPM2, JJN3, AMO1 and XG7 human myeloma cell lines using the PRMT5-inhibitor EPZ015938. EPZ015938 strongly reduced the total symmetric-dimethyl arginine levels in all cell lines and lead to decreased cellular growth, supported by cell line dependent changes in cell cycle distribution. At later time points, apoptosis occurred, as evidenced by increased AnnexinV-positivity and cleavage of PARP and caspases. Transcriptome analysis revealed a role for PRMT5 in regulating alternative splicing, nonsense-mediated decay, DNA repair and PI3K/mTOR-signaling, irrespective of the cell line type. PRMT5 inhibition reduced the expression of upstream DNA repair kinases ATM and ATR, which may in part explain our observation that EPZ015938 and the DNA-alkylating agent, melphalan, have combinatory effects. Of interest, using a low-dose of mTOR-inhibitor, we observed that cell viability was partially rescued from the effects of EPZ015938, indicating a role for mTOR-related pathways in the anti-myeloma activity of EPZ015938. Moreover, PRMT5 was shown to be involved in splicing regulation of MMSET and SLAMF7, known genes of importance in MM disease. As such, we broaden the understanding of the exact role of PRMT5 in MM disease and further underline its use as a possible therapeutic target.

11.
J Exp Clin Cancer Res ; 41(1): 45, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105345

RESUMO

BACKGROUND: Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its' role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib. METHODS: Correlation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions. RESULTS: We found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents. CONCLUSIONS: This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Inibidores da Síntese de Proteínas/uso terapêutico , Pirrolina Carboxilato Redutases/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Proliferação de Células , Humanos , Camundongos , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Inibidores da Síntese de Proteínas/farmacologia , Pirrolina Carboxilato Redutases/farmacologia , Análise de Sobrevida
12.
Cancer Lett ; 535: 215649, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315341

RESUMO

Multiple myeloma (MM) cells derive proliferative signals from the bone marrow (BM) microenvironment via exosomal crosstalk. Therapeutic strategies targeting this crosstalk are still lacking. Bortezomib resistance in MM cells is linked to elevated expression of xCT (the subunit of system Xc-). Extracellular glutamate released by system Xc- can bind to glutamate metabotropic receptor (GRM) 3, thereby upregulating Rab27-dependent vesicular trafficking. Since Rab27 is also involved in exosome biogenesis, we aimed to investigate the role of system Xc- in exosomal communication between BM stromal cells (BMSCs) and MM cells. We observed that expression of xCT and GRMs was increased after bortezomib treatment in both BMSCs and MM cells. Secretion of glutamate and exosomes was simultaneously enhanced which could be countered by inhibition of system Xc- or GRMs. Moreover, glutamate supplementation increased exosome secretion by increasing expression of Alix, TSG101, Rab27a/b and VAMP7. Importantly, the system Xc- inhibitor sulfasalazine reduced BMSC-induced resistance to bortezomib in MM cells in vitro and enhanced its anti-MM effects in vivo. These findings suggest that system Xc- plays an important role within the BM and could be a potential target in MM.


Assuntos
Exossomos , Mieloma Múltiplo , Apoptose , Medula Óssea/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Exossomos/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Microambiente Tumoral
13.
Arch Environ Contam Toxicol ; 59(1): 20-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20054527

RESUMO

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are manmade, stable perfluorosurfactants. The properties of perfluoroalkylated compounds that cause them to persist in the environment are also the properties that made them attractive compounds for industrial usage for over 50 years. Due to the unique properties of the carbon-fluorine bond and the polarity of perfluoroalkyl groups, potential substitutes to replace perfluorinated surfactants in most cases continue to be perfluoroalkyl based. Thus, issues of persistence in the environment remain. There is a need to test emerging new substitute surfactants for biodegradability. This study involved degradability measurements of emerging perfluorinated surfactant substitutes. The stability of the substitutes of perfluorinated surfactants was tested by employing advanced oxidation processes, which were based on degradation by ultraviolet lamp, hydrogen peroxide, or both, followed by conventional tests, among them an automated method based on the manometric respirometry test (OECD 301 F; OxiTop), closed-bottle test (OECD 301 D), and standardized fixed-bed bioreactor on perfluorobutane sulfonate, fluorosurfactant Zonyl, two fluoraliphatic esters (NOVEC FC-4430 and NOVEC FC-4432), and 10-(trifluoromethoxy) decane 1 sulfonate. Most of these new surfactants are well established in the marketplace and have been used in several applications as alternatives to PFOS- and PFOA-based surfactants. Ready biodegradation tests for fluoroaliphatic esters, the fluorosurfactant Zonyl, perfluorobutane sulfonate, and 10-(trifluoromethoxy) decane-1-sulfonate using the manometric respirometry test (OxiTop) did not meet the ready biodegradability test criteria. However, 10-(trifluoromethoxy) decane-1-sulfonate was observed to be degradable when a standardized fixed-bed bioreactor test was applied.


Assuntos
Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Fluorocarbonos/química , Tensoativos/química , Biodegradação Ambiental , Poluentes Ambientais/análise , Fluorocarbonos/análise , Peróxido de Hidrogênio/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Oxirredução , Ácidos Sulfônicos/análise , Ácidos Sulfônicos/química , Tensoativos/análise , Raios Ultravioleta
14.
Blood Cancer J ; 9(12): 87, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740676

RESUMO

Diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are among the most aggressive B cell non-Hodgkin lymphomas. Maternal embryonic leucine zipper kinase (MELK) plays a role in cancer cell cycle progression and is associated with poor prognosis in several cancer cell types. In this study, the role of MELK in DLBCL and MCL and the therapeutic potential of MELK targeting is evaluated. MELK is highly expressed in DLBCL and MCL patient samples, correlating with a worse clinical outcome in DLBCL. Targeting MELK, using the small molecule OTSSP167, impaired cell growth and survival and induced caspase-mediated apoptosis in the lymphoma cells. Western blot analysis revealed that MELK targeting decreased the phosphorylation of FOXM1 and the protein levels of EZH2 and several mitotic regulators, such as Cdc25B, cyclin B1, Plk-1, and Aurora kinases. In addition, OTSSP167 also sensitized the lymphoma cells to the clinically relevant Bcl-2 inhibitor venetoclax by strongly reducing Mcl1 levels. Finally, OTSSP167 treatment of A20-inoculated mice resulted in a significant prolonged survival. In conclusion, targeting MELK with OTSSP167 induced strong anti-lymphoma activity both in vitro and in vivo. These findings suggest that MELK could be a potential new target in these aggressive B cell malignancies.


Assuntos
Biomarcadores Tumorais , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma de Célula do Manto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma de Célula do Manto/diagnóstico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Camundongos , Terapia de Alvo Molecular , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Lett ; 442: 233-241, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419344

RESUMO

Multiple Myeloma (MM) is an incurable malignancy of terminally differentiated plasma cells, which are predominantly localized in the bone marrow. Myeloid-derived suppressor cells (MDSC) are described to promote MM progression by immunosuppression and induction of angiogenesis. However, their direct role in drug resistance and tumor survival is still unknown. In this study, we performed co-culture experiments of myeloma cells with 5TMM derived MDSC in vitro, leading to increased survival and proliferation of MM cells. Co-culture experiments resulted in MDSC-induced AMPK phosphorylation in MM cells, which was associated with an increase in the anti-apoptotic factors MCL-1 and BCL-2, and the autophagy-marker LC3II. In addition, 5TMM cells inoculated in mice showed a clear upregulation of AMPK phosphorylation in vivo. Targeting the AMPK pathway by Compound C resulted in apoptosis of human myeloma cell lines, primary MM cells and 5TMM cells. Importantly, we observed that the tumor-promoting effect of MDSC was partially mediated by AMPK activation. In conclusion, our data clearly demonstrate that MDSC directly increase the survival of MM cells, partially through AMPK activation, identifying this pathway as a new target in the treatment of MM patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Mieloma Múltiplo/enzimologia , Células Supressoras Mieloides/metabolismo , Comunicação Parácrina , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Humanos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
16.
Cancer Res ; 78(5): 1155-1168, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29259009

RESUMO

RAS mutations occur frequently in multiple myeloma (MM), but apart from driving progression, they can also stimulate antitumor effects by activating tumor-suppressive RASSF proteins. Although this family of death effector molecules are often silenced in cancers, functional data about RASSF proteins in MM are lacking. Here, we report that RASSF4 is downregulated during MM progression and correlates with a poor prognosis. Promoter methylation analysis in human cell lines revealed an inverse correlation between RASSF4 mRNA levels and methylation status. Epigenetic modulating agents restored RASSF4 expression. Enforced expression of RASSF4 induced G2-phase cell-cycle arrest and apoptosis in human cell lines, reduced primary MM cell viability, and blocked MM growth in vivo Mechanistic investigations showed that RASSF4 linked RAS to several pro-death pathways, including those regulated by the kinases MST1, JNK, and p38. By activating MST1 and the JNK/c-Jun pathway, RASSF4 sensitized MM cells to bortezomib. Genetic or pharmacological elevation of RASSF4 levels increased the anti-MM effects of the clinical relevant MEK1/2 inhibitor trametinib. Kinome analysis revealed that this effect was mediated by concomitant activation of the JNK/c-Jun pathway along with inactivation of the MEK/ERK and PI3K/mTOR/Akt pathways. Overall, our findings establish RASSF4 as a tumor-suppressive hub in MM and provide a mechanistic rationale for combining trametinib with HDAC inhibitors or bortezomib to treat patients with tumors exhibiting low RASSF4 expression.Significance: These findings provide a mechanistic rationale for combining trametinib with HDAC inhibitors or bortezomib in patients with multiple myeloma whose tumors exhibit low RASSF4 expression. Cancer Res; 78(5); 1155-68. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas ras/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Bortezomib/farmacologia , Proliferação de Células , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Seguimentos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 8(52): 90501-90520, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163849

RESUMO

Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

18.
Oncotarget ; 7(4): 4062-76, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26716651

RESUMO

The anaphase promoting complex/cyclosome (APC/C) is an ubiquitin ligase involved in cell cycle. During the metaphase-anaphase transition the APC/C is activated by Cdc20. The aim of this study is to elucidate the importance and therapeutic potential of APC/C and its co-activator Cdc20 in multiple myeloma (MM). Gene expression analysis revealed that Cdc20 was expressed at higher levels in gene expression-based high-risk MM patients. Moreover, high Cdc20 expression correlated with poor prognosis. Treatment of human myeloma cell lines with proTAME, an APC/C inhibitor, resulted in an accumulation of APC/CCdc20 substrate cyclin B1 and an accumulation of cells in metaphase. Moreover we observed a significant dose-dependent decrease in viability and increase in apoptosis in MM cells upon proTAME treatment. The induction of apoptosis was accompanied with caspase 3, 8, 9 and PARP cleavage. A similar metaphase arrest and induction of apoptosis were obtained with specific knockdown of Cdc20. In addition, we demonstrated the accumulation of Bim was partially responsible for the observed cell death. Combining proTAME with another APC/C inhibitor apcin or the alkylating agent melphalan resulted in enhanced anti-MM activity. This study suggests that the APC/C and its co-activator Cdc20 could be a new and promising target especially in high-risk MM patients.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carbamatos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diaminas/farmacologia , Melfalan/farmacologia , Mitose/efeitos dos fármacos , Mieloma Múltiplo/patologia , Antineoplásicos Alquilantes/farmacologia , Western Blotting , Proteínas Cdc20/metabolismo , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA