Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(D1): D835-D844, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31777943

RESUMO

ClinVar is a freely available, public archive of human genetic variants and interpretations of their relationships to diseases and other conditions, maintained at the National Institutes of Health (NIH). Submitted interpretations of variants are aggregated and made available on the ClinVar website (https://www.ncbi.nlm.nih.gov/clinvar/), and as downloadable files via FTP and through programmatic tools such as NCBI's E-utilities. The default view on the ClinVar website, the Variation page, was recently redesigned. The new layout includes several new sections that make it easier to find submitted data as well as summary data such as all diseases and citations reported for the variant. The new design also better represents more complex data such as haplotypes and genotypes, as well as variants that are in ClinVar as part of a haplotype or genotype but have no interpretation for the single variant. ClinVar's variant-centric XML had its production release in April 2019. The ClinVar website and E-utilities both have been updated to support the VCV (variation in ClinVar) accession numbers found in the variant-centric XML file. ClinVar's search engine has been fine-tuned for improved retrieval of search results.


Assuntos
Bases de Dados Genéticas , Doença/genética , Variação Genética/genética , Genoma Humano , Genômica , Haplótipos , Humanos , Internet , National Library of Medicine (U.S.) , Ferramenta de Busca , Estados Unidos
2.
Bioinformatics ; 36(6): 1902-1907, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738401

RESUMO

MOTIVATION: Normalizing sequence variants on a reference, projecting them across congruent sequences and aggregating their diverse representations are critical to the elucidation of the genetic basis of disease and biological function. Inconsistent representation of variants among variant callers, local databases and tools result in discrepancies that complicate analysis. NCBI's genetic variation resources, dbSNP and ClinVar, require a robust, scalable set of principles to manage asserted sequence variants. RESULTS: The SPDI data model defines variants as a sequence of four attributes: sequence, position, deletion and insertion, and can be applied to nucleotide and protein variants. NCBI web services convert representations among HGVS, VCF and SPDI and provide two functions to aggregate variants. One, based on the NCBI Variant Overprecision Correction Algorithm, returns a unique, normalized representation termed the 'Contextual Allele'. The SPDI data model, with its four operations, defines exactly the reference subsequence affected by the variant, even in repeat regions, such as homopolymer and other sequence repeats. The second function projects variants across congruent sequences and depends on an alignment dataset of non-assembly NCBI RefSeq sequences (prefixed NM, NR and NG), as well as inter- and intra-assembly-associated genomic sequences (NCs, NTs and NWs), supporting robust projection of variants across congruent sequences and assembly versions. The variant is projected to all congruent Contextual Alleles. One of these Contextual Alleles, typically the allele based on the latest assembly version, represents the entire set, is designated the unique 'Canonical Allele' and is used directly to aggregate variants across congruent sequences. AVAILABILITY AND IMPLEMENTATION: The SPDI services are available for open access at: https://api.ncbi.nlm.nih.gov/variation/v0. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados Genéticas , Genômica , Algoritmos , Genoma , Vocabulário Controlado
3.
Nucleic Acids Res ; 46(D1): D1062-D1067, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29165669

RESUMO

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a freely available, public archive of human genetic variants and interpretations of their significance to disease, maintained at the National Institutes of Health. Interpretations of the clinical significance of variants are submitted by clinical testing laboratories, research laboratories, expert panels and other groups. ClinVar aggregates data by variant-disease pairs, and by variant (or set of variants). Data aggregated by variant are accessible on the website, in an improved set of variant call format files and as a new comprehensive XML report. ClinVar recently started accepting submissions that are focused primarily on providing phenotypic information for individuals who have had genetic testing. Submissions may come from clinical providers providing their own interpretation of the variant ('provider interpretation') or from groups such as patient registries that primarily provide phenotypic information from patients ('phenotyping only'). ClinVar continues to make improvements to its search and retrieval functions. Several new fields are now indexed for more precise searching, and filters allow the user to narrow down a large set of search results.


Assuntos
Bases de Dados de Ácidos Nucleicos , Doença/genética , Variação Genética , Humanos , Fenótipo
4.
N Engl J Med ; 372(23): 2235-42, 2015 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-26014595

RESUMO

On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient's family pursues genetic testing that shows a "likely pathogenic" variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as "likely benign" by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença/genética , Variação Genética , Genoma Humano , Testes Genéticos , Humanos , National Library of Medicine (U.S.) , Estados Unidos
5.
Nucleic Acids Res ; 44(D1): D862-8, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26582918

RESUMO

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) at the National Center for Biotechnology Information (NCBI) is a freely available archive for interpretations of clinical significance of variants for reported conditions. The database includes germline and somatic variants of any size, type or genomic location. Interpretations are submitted by clinical testing laboratories, research laboratories, locus-specific databases, OMIM®, GeneReviews™, UniProt, expert panels and practice guidelines. In NCBI's Variation submission portal, submitters upload batch submissions or use the Submission Wizard for single submissions. Each submitted interpretation is assigned an accession number prefixed with SCV. ClinVar staff review validation reports with data types such as HGVS (Human Genome Variation Society) expressions; however, clinical significance is reported directly from submitters. Interpretations are aggregated by variant-condition combination and assigned an accession number prefixed with RCV. Clinical significance is calculated for the aggregate record, indicating consensus or conflict in the submitted interpretations. ClinVar uses data standards, such as HGVS nomenclature for variants and MedGen identifiers for conditions. The data are available on the web as variant-specific views; the entire data set can be downloaded via ftp. Programmatic access for ClinVar records is available through NCBI's E-utilities. Future development includes providing a variant-centric XML archive and a web page for details of SCV submissions.


Assuntos
Bases de Dados Genéticas , Doença/genética , Variação Genética , Genes , Genoma Humano , Humanos
6.
Nucleic Acids Res ; 44(D1): D733-45, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26553804

RESUMO

The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Bovinos , Perfilação da Expressão Gênica , Genoma Fúngico , Genoma Humano , Genoma Microbiano , Genoma de Planta , Genoma Viral , Genômica/normas , Humanos , Invertebrados/genética , Camundongos , Anotação de Sequência Molecular , Nematoides/genética , Filogenia , RNA Longo não Codificante/genética , Ratos , Padrões de Referência , Análise de Sequência de Proteína , Análise de Sequência de RNA , Vertebrados/genética
7.
Nucleic Acids Res ; 43(Database issue): D36-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355515

RESUMO

The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP.


Assuntos
Bases de Dados Genéticas , Genes , Variação Genética , Genômica , Internet , National Library of Medicine (U.S.) , Fenótipo , Estados Unidos
8.
Hum Mutat ; 37(6): 549-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919176

RESUMO

Numerous databases containing information about DNA, RNA, and protein variations are available. Gene-specific variant databases (locus-specific variation databases, LSDBs) are typically curated and maintained for single genes or groups of genes for a certain disease(s). These databases are widely considered as the most reliable information source for a particular gene/protein/disease, but it should also be made clear they may have widely varying contents, infrastructure, and quality. Quality is very important to evaluate because these databases may affect health decision-making, research, and clinical practice. The Human Variome Project (HVP) established a Working Group for Variant Database Quality Assessment. The basic principle was to develop a simple system that nevertheless provides a good overview of the quality of a database. The HVP quality evaluation criteria that resulted are divided into four main components: data quality, technical quality, accessibility, and timeliness. This report elaborates on the developed quality criteria and how implementation of the quality scheme can be achieved. Examples are provided for the current status of the quality items in two different databases, BTKbase, an LSDB, and ClinVar, a central archive of submissions about variants and their clinical significance.


Assuntos
Bases de Dados Genéticas/normas , Variação Genética , Genoma Humano , Projeto Genoma Humano , Humanos , Controle de Qualidade
9.
Hum Mutat ; 37(6): 564-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26931183

RESUMO

The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen.


Assuntos
Variação Genética , Projeto Genoma Humano/organização & administração , Terminologia como Assunto , Genoma Humano , Guias como Assunto , Humanos , Análise de Sequência de DNA
10.
Nucleic Acids Res ; 42(Database issue): D980-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24234437

RESUMO

ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) provides a freely available archive of reports of relationships among medically important variants and phenotypes. ClinVar accessions submissions reporting human variation, interpretations of the relationship of that variation to human health and the evidence supporting each interpretation. The database is tightly coupled with dbSNP and dbVar, which maintain information about the location of variation on human assemblies. ClinVar is also based on the phenotypic descriptions maintained in MedGen (http://www.ncbi.nlm.nih.gov/medgen). Each ClinVar record represents the submitter, the variation and the phenotype, i.e. the unit that is assigned an accession of the format SCV000000000.0. The submitter can update the submission at any time, in which case a new version is assigned. To facilitate evaluation of the medical importance of each variant, ClinVar aggregates submissions with the same variation/phenotype combination, adds value from other NCBI databases, assigns a distinct accession of the format RCV000000000.0 and reports if there are conflicting clinical interpretations. Data in ClinVar are available in multiple formats, including html, download as XML, VCF or tab-delimited subsets. Data from ClinVar are provided as annotation tracks on genomic RefSeqs and are used in tools such as Variation Reporter (http://www.ncbi.nlm.nih.gov/variation/tools/reporter), which reports what is known about variation based on user-supplied locations.


Assuntos
Bases de Dados Genéticas , Variação Genética , Fenótipo , Genoma Humano , Genômica , Humanos , Internet
11.
Nucleic Acids Res ; 42(Database issue): D873-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285302

RESUMO

Locus Reference Genomic (LRG; http://www.lrg-sequence.org/) records contain internationally recognized stable reference sequences designed specifically for reporting clinically relevant sequence variants. Each LRG is contained within a single file consisting of a stable 'fixed' section and a regularly updated 'updatable' section. The fixed section contains stable genomic DNA sequence for a genomic region, essential transcripts and proteins for variant reporting and an exon numbering system. The updatable section contains mapping information, annotation of all transcripts and overlapping genes in the region and legacy exon and amino acid numbering systems. LRGs provide a stable framework that is vital for reporting variants, according to Human Genome Variation Society (HGVS) conventions, in genomic DNA, transcript or protein coordinates. To enable translation of information between LRG and genomic coordinates, LRGs include mapping to the human genome assembly. LRGs are compiled and maintained by the National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). LRG reference sequences are selected in collaboration with the diagnostic and research communities, locus-specific database curators and mutation consortia. Currently >700 LRGs have been created, of which >400 are publicly available. The aim is to create an LRG for every locus with clinical implications.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Éxons , Loci Gênicos , Genômica/normas , Humanos , Internet , Proteínas/genética , RNA Mensageiro/química , Padrões de Referência
12.
Nucleic Acids Res ; 42(Database issue): D756-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259432

RESUMO

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of annotated genomic, transcript and protein sequence records derived from data in public sequence archives and from computation, curation and collaboration (http://www.ncbi.nlm.nih.gov/refseq/). We report here on growth of the mammalian and human subsets, changes to NCBI's eukaryotic annotation pipeline and modifications affecting transcript and protein records. Recent changes to NCBI's eukaryotic genome annotation pipeline provide higher throughput, and the addition of RNAseq data to the pipeline results in a significant expansion of the number of transcripts and novel exons annotated on mammalian RefSeq genomes. Recent annotation changes include reporting supporting evidence for transcript records, modification of exon feature annotation and the addition of a structured report of gene and sequence attributes of biological interest. We also describe a revised protein annotation policy for alternatively spliced transcripts with more divergent predicted proteins and we summarize the current status of the RefSeqGene project.


Assuntos
Bases de Dados Genéticas , Genômica , Mamíferos/genética , Animais , Eucariotos/genética , Éxons , Genoma , Genômica/normas , Humanos , Internet , Anotação de Sequência Molecular , Proteínas/química , Proteínas/genética , RNA/química , Padrões de Referência
13.
Nat Genet ; 39(4): 433-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17392799

RESUMO

Lists of variations in genomic DNA and their effects have been kept for some time and have been used in diagnostics and research. Although these lists have been carefully gathered and curated, there has been little standardization and coordination, complicating their use. Given the myriad possible variations in the estimated 24,000 genes in the human genome, it would be useful to have standard criteria for databases of variation. Incomplete collection and ascertainment of variants demonstrates a need for a universally accessible system. These and other problems led to the World Heath Organization-cosponsored meeting on June 20-23, 2006 in Melbourne, Australia, which launched the Human Variome Project. This meeting addressed all areas of human genetics relevant to collection of information on variation and its effects. Members of each of eight sessions (the clinic and phenotype, the diagnostic laboratory, the research laboratory, curation and collection, informatics, relevance to the emerging world, integration and federation and funding and sustainability) developed a number of recommendations that were then organized into a total of 96 recommendations to act as a foundation for future work worldwide. Here we summarize the background of the project, the meeting and its recommendations.


Assuntos
Genoma Humano , Guias como Assunto , Polimorfismo Genético , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/genética , Projeto Genoma Humano , Humanos , Organização Mundial da Saúde
14.
Nucleic Acids Res ; 41(Database issue): D1070-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193260

RESUMO

The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents.


Assuntos
Clonagem Molecular , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Animais , Mapeamento Cromossômico , Humanos , Internet , Camundongos , Análise de Sequência de DNA , Integração de Sistemas
15.
Nucleic Acids Res ; 41(Database issue): D925-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193275

RESUMO

The National Institutes of Health Genetic Testing Registry (GTR; available online at http://www.ncbi.nlm.nih.gov/gtr/) maintains comprehensive information about testing offered worldwide for disorders with a genetic basis. Information is voluntarily submitted by test providers. The database provides details of each test (e.g. its purpose, target populations, methods, what it measures, analytical validity, clinical validity, clinical utility, ordering information) and laboratory (e.g. location, contact information, certifications and licenses). Each test is assigned a stable identifier of the format GTR000000000, which is versioned when the submitter updates information. Data submitted by test providers are integrated with basic information maintained in National Center for Biotechnology Information's databases and presented on the web and through FTP (ftp.ncbi.nih.gov/pub/GTR/_README.html).


Assuntos
Bases de Dados Genéticas , Testes Genéticos , Sistema de Registros , Genes , Variação Genética , Humanos , Internet , Fenótipo
16.
Am J Med Genet C Semin Med Genet ; 166C(1): 93-104, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24634402

RESUMO

Genome-wide association studies, DNA sequencing studies, and other genomic studies are finding an increasing number of genetic variants associated with clinical phenotypes that may be useful in developing diagnostic, preventive, and treatment strategies for individual patients. However, few variants have been integrated into routine clinical practice. The reasons for this are several, but two of the most significant are limited evidence about the clinical implications of the variants and a lack of a comprehensive knowledge base that captures genetic variants, their phenotypic associations, and other pertinent phenotypic information that is openly accessible to clinical groups attempting to interpret sequencing data. As the field of medicine begins to incorporate genome-scale analysis into clinical care, approaches need to be developed for collecting and characterizing data on the clinical implications of variants, developing consensus on their actionability, and making this information available for clinical use. The National Human Genome Research Institute (NHGRI) and the Wellcome Trust thus convened a workshop to consider the processes and resources needed to: (1) identify clinically valid genetic variants; (2) decide whether they are actionable and what the action should be; and (3) provide this information for clinical use. This commentary outlines the key discussion points and recommendations from the workshop.


Assuntos
Variação Genética/genética , Informática Médica/métodos , Fenótipo , Medicina de Precisão/métodos , Educação , Humanos , Disseminação de Informação/métodos , National Human Genome Research Institute (U.S.) , Medicina de Precisão/tendências , Estados Unidos
17.
Nucleic Acids Res ; 40(Database issue): D130-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22121212

RESUMO

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16,00 organisms, 2.4 × 0(6) genomic records, 13 × 10(6) proteins and 2 × 10(6) RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).


Assuntos
Bases de Dados Genéticas , Anotação de Sequência Molecular , Análise de Sequência/normas , Genômica/normas , Humanos , Padrões de Referência , Análise de Sequência de DNA/normas , Análise de Sequência de Proteína/normas , Análise de Sequência de RNA/normas
18.
Nucleic Acids Res ; 40(Database issue): D13-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140104

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados como Assunto , Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , Internet , Modelos Moleculares , National Library of Medicine (U.S.) , Publicações Periódicas como Assunto , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Análise de Sequência de RNA , Bibliotecas de Moléculas Pequenas , Estados Unidos
19.
Hum Mutat ; 34(4): 661-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401191

RESUMO

A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project." Understanding the genetic contribution to both rare single-gene "Mendelian" disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort toward this important goal.


Assuntos
Bases de Dados Genéticas , Projeto Genoma Humano , Fenótipo , Biologia Computacional , Humanos
20.
Nucleic Acids Res ; 39(Database issue): D52-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21115458

RESUMO

Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) is National Center for Biotechnology Information (NCBI)'s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis. The content represents the integration of curation and automated processing from NCBI's Reference Sequence project (RefSeq), collaborating model organism databases, consortia such as Gene Ontology and other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, genomic location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities) and for bulk transfer by FTP.


Assuntos
Bases de Dados Genéticas , Genes , Genômica , Internet , National Library of Medicine (U.S.) , Estados Unidos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA