RESUMO
Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes.
Assuntos
Bactérias/classificação , Bactérias/genética , Microbiologia Ambiental , Manipulação de Alimentos , Microbiota , Carne Vermelha/microbiologia , Animais , Bovinos , Metagenômica , Análise de Sequência de DNARESUMO
Staphylococcus aureus is one of the most prominent nosocomial, community and farm acquired bacterial infections among animals and human populations. The main purpose of our study was to identify and characterize antimicrobial resistance (AMR) among Staphylococcus aureus isolated from livestock, poultry and humans and to further identify the associated genes. Staphylococcus aureus isolates from human, bovine, swine and poultry were collected from different laboratories across the United States collected between 2003 and 2016. Antimicrobial susceptibility testing for 13 antimicrobials was performed and conventional PCR was used to detect the presence of the nuc gene, mec gene, and to detect int1 gene. Associations between the presence of mec and intl and specific AMR profiles were determined. Antimicrobial resistance was detected in all four host categories, with the highest overall rates found in swine, 100% resistant to tetracycline, 88% to penicillin and 64% clindamycin. The next highest was found among humans with 81.6% of isolates resistant to penicillin followed by 44% to clindamycin and 43% to erythromycin. Among beef cattle isolates, 63.2% were resistant to penicillin, 15.8% resistant to clindamycin and 15.8% to erythromycin. No isolates from any of the hosts were resistant to linezolid. Among poultry isolates, the highest AMR was found to clindamycin, followed by erythromycin and penicillin. Among dairy cattle, highest resistance was found to penicillin, followed by chloramphenicol and gentamicin. Dairy cattle were the only host category with isolates that are resistant to trimethoprim-sulfamethoxazole. Of the 220 isolates detected by latex agglutination, 217 were confirmed to be S. aureus via PCR of the nuc gene, 21.4% were positive for the mecA gene. Swine had the highest prevalence of the mecA gene, followed by humans, poultry and beef cattle. This study has demonstrated a high occurrence of penicillin resistance among all S. aureus isolates. There were differences observed between host species with tetracycline resistance being the highest among swine isolates and clindamycin being highest in poultry isolates. No detection of oxacillin resistance was found in isolates from dairy cattle but was found in isolates from all of the other host species, 94% of which contained the mecA gene.
RESUMO
Antimicrobial resistance (AMR) is a global public health threat, yet tools for detecting resistance patterns are limited and require advanced molecular methods. Metabolomic approaches produce metabolite profiles and help provide scientific evidence of differences in metabolite expressions between Salmonella Typhimurium from various hosts. This research aimed to evaluate the metabolomic profiles of S. Typhimurium associated with AMR and it compares profiles across various hosts. Three samples, each from bovine, porcine, and humans (total n = 9), were selectively chosen from an existing library to compare these nine isolates cultured under no drug exposure to the same isolates cultured in the presence of the antimicrobial drug panel ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline). This was followed by metabolomic profiling using UPLC and GC-mass spectrometry. The results indicated that the metabolite regulation was affected by antibiotic exposure, irrespective of the host species. When exposed to antibiotics, 59.69% and 40.31% of metabolites had increased and decreased expressions, respectively. The most significantly regulated metabolic pathway was aminoacyl-tRNA biosynthesis, which demonstrated increased expressions of serine, aspartate, alanine, and citric acid. Metabolites that showed decreased expressions included glutamate and pyruvate. This pathway and associated metabolites have known AMR associations and could be targeted for new drug discoveries and diagnostic methods.
RESUMO
Two methods for the extraction of RNA of vesicular stomatitis virus (VSV) Indiana1 and New Jersey and their simultaneous amplification by one-step polymerase chain reaction using reverse transcriptase were evaluated. A guanidine-thiocyanate-based RNA extraction (Qiagen RNeasy Mini Kit, Qiagen, Valencia, CA ) followed by column-based purification coupled with one-step RT-PCR proved to be a simple, safe, practicable, and reliable tool for rapid, highly sensitive, and specific differential diagnosis of both types of VSV in cell lysate and spiked tissue samples as compared with the tri-phasic extraction method (Tri-reagent method). When RNA was extracted either from VSV cell culture stock or from VSV spiked bovine lymph nodes by using Qiagen RNeasy Mini Kit, the detection limit in the multiplex RT-PCR was as low as 0.505 to 2.84 TCID(50) for VSV-IND and VSV-NJ, respectively. The multiplex RT-PCR consistently detected VSV-IND and NJ RNA in as little as 0.1-1.0 fg of total RNA from spiked BHK-21 cell suspension when Qiagen RNeasy mini kit was used. The multiplex RT-PCR assay was capable of detecting both types of VSV in a one-step reaction tube. The minimum sensitivity of this assay in various experiments was 0.1683 TCID(50) (IND), 0.0946 TCID(50) (NJ), and 0.057 fg (IND and NJ) per 2 µl PCR sample, which is significantly more sensitive than reported previously (0.28-2.8 TCID50/1 µl). So the present study improved the sensitivity of previously reported multiplex RT-PCR for the detection and differentiation of VSV-IND and VSV-NJ in a single assay.
Assuntos
RNA Viral/isolamento & purificação , Estomatite Vesicular/diagnóstico , Vírus da Estomatite Vesicular Indiana/isolamento & purificação , Vírus da Estomatite Vesicular New Jersey/isolamento & purificação , Animais , Bovinos , Humanos , Linfonodos/química , Linfonodos/virologia , Valor Preditivo dos Testes , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/classificação , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular New Jersey/classificação , Vírus da Estomatite Vesicular New Jersey/genéticaRESUMO
Objectives: Zoonotic pathogens on dairy farms are a known risk for people who work and live there. Exposure and/or transmission of Salmonella serovars, E. coli (O157; H7), Campylobacter jejuni, and Cryptosporidium parvum have been documented to occur in the dairy farm environment. Social ecological factors have been identified as determinants of preventive behaviors of people at risk of infectious diseases.Methods: This study described the effect of socio-ecological factors on selected zoonotic bacterial and protozoal diseases in 42 workers of two dairy farms.Results: Occupational exposure to Salmonella ser. Dublin, E. coli, and Campylobacter spp. was confirmed. Self-efficacy and negative workplace perceptions were risk factors for Salmonella Dublin exposure (OR = 1.43[95% CI 1.11-2.22] & 1.22 [95% CI 1.02-1.53] respectively,). Additionally, safety knowledge and risk perceptions were protective factors of exposure (OR = 0.90 [95% CI 0.79-1.00]). Positive perceptions of supervisors and coworkers was a protective factor of Campylobacter exposure (OR = 0.89 [95% CI 0.79-0.98]).Conclusion: Results indicated that the presence of a supporting organizational environment, good communication with supervisors and coworkers, and training on prevention of zoonotic diseases would potentially reduce occupational exposures to zoonotic diseases on these farms.
Assuntos
Criptosporidiose , Cryptosporidium , Animais , Colorado , Escherichia coli , Humanos , Zoonoses/epidemiologiaRESUMO
INTRODUCTION: Multidrug resistance (MDR) is a serious issue prevalent in various agriculture-related foodborne pathogens including Salmonella enterica (S. enterica) Typhimurium. Class I integrons have been detected in Salmonella spp. strains isolated from food producing animals and humans and likely play a critical role in transmitting antimicrobial resistance within and between livestock and human populations. OBJECTIVE: The main objective of our study was to characterize class I integron presence to identify possible integron diversity among and between antimicrobial resistant Salmonella Typhimurium isolates from various host species, including humans, cattle, swine, and poultry. METHODS: An association between integron presence with multidrug resistance was evaluated. One hundred and eighty-three S. Typhimurium isolates were tested for antimicrobial resistance (AMR). Class I integrons were detected and sequenced. Similarity of AMR patterns between host species was also studied within each integron type. RESULTS: One hundred seventy-four (95.1%) of 183 S.Typhimurium isolates were resistant to at least one antimicrobial and 82 (44.8%) were resistant to 5 or more antimicrobials. The majority of isolates resistant to at least one antimicrobial was from humans (45.9%), followed by swine (19.1%) and then bovine (16.9%) isolates; poultry showed the lowest number (13.1%) of resistant isolates. Our study has demonstrated high occurrence of class I integrons in S. Typhimurium across different host species. Only one integron size was detected in poultry isolates. There was a significant association between integron presence of any size and specific multidrug resistance pattern among the isolates from human, bovine and swine. CONCLUSIONS: Our study has demonstrated a high occurrence of class I integrons of different sizes in Salmonella Typhimurium across various host species and their association with multidrug resistance. This demonstration indicates that multidrug resistant Salmonella Typhimurium is of significant public health occurrence and reflects on the importance of judicious use of antimicrobials among livestock and poultry.
Assuntos
Farmacorresistência Bacteriana/genética , Variação Genética , Integrons/genética , Salmonella typhimurium/genética , Animais , Antibacterianos/farmacologia , Bovinos , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Aves Domésticas , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/isolamento & purificação , SuínosRESUMO
This study was conducted to compare aerobic culture, polymerase chain reaction (PCR), lateral flow immunoassay (LFI), and shotgun metagenomics for identification of Salmonella enterica in feces collected from feedlot cattle. Samples were analyzed in parallel using all four tests. Results from aerobic culture and PCR were 100% concordant and indicated low S. enterica prevalence (3/60 samples positive). Although low S. enterica prevalence restricted formal statistical comparisons, LFI and deep metagenomic sequencing results were discordant with these results. Specifically, metagenomic analysis using k-mer-based classification against the RefSeq database indicated that 11/60 of samples contained sequence reads that matched to the S. enterica genome and uniquely identified this species of bacteria within the sample. However, further examination revealed that plasmid sequences were often included with bacterial genomic sequence data submitted to NCBI, which can lead to incorrect taxonomic classification. To circumvent this classification problem, we separated all plasmid sequences included in bacterial RefSeq genomes and reassigned them to a unique taxon so that they would not be uniquely associated with specific bacterial species such as S. enterica. Using this revised database and taxonomic structure, we found that only 6/60 samples contained sequences specific for S. enterica, suggesting increased relative specificity. Reads identified as S. enterica in these six samples were further evaluated using BLAST and NCBI's nr/nt database, which identified that only 2/60 samples contained reads exclusive to S. enterica chromosomal genomes. These two samples were culture- and PCR-negative, suggesting that even deep metagenomic sequencing suffers from lower sensitivity and specificity in comparison to more traditional pathogen detection methods. Additionally, no sample reads were taxonomically classified as S. enterica with two other metagenomic tools, Metagenomic Intra-species Diversity Analysis System (MIDAS) and Metagenomic Phylogenetic Analysis 2 (MetaPhlAn2). This study re-affirmed that the traditional techniques of aerobic culture and PCR provide similar results for S. enterica identification in cattle feces. On the other hand, metagenomic results are highly influenced by the classification method and reference database employed. These results highlight the nuances of computational detection of species-level sequences within short-read metagenomic sequence data, and emphasize the need for cautious interpretation of such results.
RESUMO
Previously published studies have neither used nor reported the results of an indirect enzyme-linked immunosorbent assay (iELISA) to measure serologic responses in natural outbreaks of strangles. The concept of using serologic responses to identify persistent carriers of Streptococcus equi has been proposed but not scientifically evaluated. The specific aims of the current study were to determine the duration and level of truncated fibrinogen-binding protein-specific (SeM allele 1) antibody production in ponies involved in a natural outbreak of strangles and to determine if test results from this serologic iELISA could predict persistent carrier status. Serologic samples were obtained before and after an outbreak of naturally occurring strangles infection. Persistent carriers of S. equi were identified via culture and polymerase chain reaction (PCR) testing of lavage fluid collected from the guttural pouches and nasopharynx or swabs of the nasopharynx after recovery from acute disease and at postmortem examination. Logistic regression analysis was used to determine if an association existed between serologic response and persistent carrier state. The ELISA reported in the current study definitively confirmed a recent exposure to S. equi. However, the measured serologic response did not predict carrier status in this strangles outbreak. Therefore, a guttural-pouch endoscopy with subsequent culture or PCR testing to detect S. equi remains the most accurate method available for the identification of persistent carriers.
Assuntos
Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Portador Sadio/veterinária , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/imunologia , Infecções Estreptocócicas/veterinária , Animais , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática/veterinária , Cavalos , Reprodutibilidade dos Testes , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus equiRESUMO
OBJECTIVE: To determine the adsorptive capability of di-tri-octahedral smectite (DTOS) on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies. SAMPLE POPULATION: 3 C perfringens exotoxins and 9 colostral samples. PROCEDURES: Alpha, beta, and beta-2 exotoxins were individually co-incubated with serial dilutions of DTOS or bismuth subsalicylate, and the amount of toxin remaining after incubation was determined via toxin-specific ELISAs. Colostral samples from healthy mares were individually co-incubated with serial dilutions of DTOS, and colostral IgG concentrations were determined via single radial immunodiffusion assay. RESULTS: Di-tri-octahedral smectite decreased the amount of each C perfringens exotoxin in co-incubated samples in a dose-dependent manner and was more effective than bismuth subsalicylate at reducing exotoxins in vitro. Decreases in the concentration of IgG were detected in samples of colostrum that were combined with DTOS at 1:4 through 1:16 dilutions, whereas no significant decrease was evident with DTOS at the 1:32 dilution. CONCLUSIONS AND CLINICAL RELEVANCE: Di-tri-octahedral smectite effectively adsorbed C perfringens exotoxins in vitro and had a dose-dependent effect on the availability of equine colostral antibodies. Results suggested that DTOS may be an appropriate adjunctive treatment in the management of neonatal clostridiosis in horses. In vivo studies are necessary to fully assess the clinical efficacy of DTOS treatment.
Assuntos
Toxinas Bacterianas/química , Proteínas de Ligação ao Cálcio/química , Colostro/química , Cavalos , Silicatos/química , Fosfolipases Tipo C/química , Adsorção , AnimaisRESUMO
The objective was to examine effects of treating commercial beef feedlot cattle with therapeutic doses of tulathromycin, a macrolide antimicrobial drug, on changes in the fecal resistome and microbiome using shotgun metagenomic sequencing. Two pens of cattle were used, with all cattle in one pen receiving metaphylaxis treatment (800 mg subcutaneous tulathromycin) at arrival to the feedlot, and all cattle in the other pen remaining unexposed to parenteral antibiotics throughout the study period. Fecal samples were collected from 15 selected cattle in each group just prior to treatment (Day 1), and again 11 days later (Day 11). Shotgun sequencing was performed on isolated metagenomic DNA, and reads were aligned to a resistance and a taxonomic database to identify alignments to antimicrobial resistance (AMR) gene accessions and microbiome content. Overall, we identified AMR genes accessions encompassing 9 classes of AMR drugs and encoding 24 unique AMR mechanisms. Statistical analysis was used to identify differences in the resistome and microbiome between the untreated and treated groups at both timepoints, as well as over time. Based on composition and ordination analyses, the resistome and microbiome were not significantly different between the two groups on Day 1 or on Day 11. However, both the resistome and microbiome changed significantly between these two sampling dates. These results indicate that the transition into the feedlot-and associated changes in diet, geography, conspecific exposure, and environment-may exert a greater influence over the fecal resistome and microbiome of feedlot cattle than common metaphylactic antimicrobial drug treatment.
RESUMO
Mycobacterium tuberculosis can infect and be transmitted between elephants and humans. In elephants, the 'gold standard' reference test for detection of tuberculosis is culture, which takes a minimum of eight weeks for results and has limited sensitivity. A screening test that is rapid, easily implemented, and accurate is needed to aid in diagnosis of tuberculosis in elephants. Ninety-nine clinical trunk wash samples obtained from 33 elephants were utilized to validate three molecular extraction techniques followed by a polymerase chain reaction for detection of M. tuberculosis. Diagnostic sensitivity and specificity were estimated compared to culture. Kappa coefficients were determined between molecular results and various culture categories and serological test results. An internal amplification control was developed and assessed to monitor for PCR inhibition. One molecular test (the Column method) outperformed the other two, with diagnostic sensitivity and kappa agreement estimates of 100% (CI 57-100) and 0.46 (CI 0.2-0.74), respectively, compared to culture alone. The percentage of molecular-positive/culture-negative samples was 8.4% overall. The molecular extraction technique followed by PCR provides a much-needed rapid screening tool for detection of tuberculosis in elephants. Immediate procedures can be implemented to further assess PCR-positive animals and provide personnel biosecurity. While a positive result is not a definitive test for elephant tuberculosis, the molecular test results can be used to support current diagnostic procedures applied by veterinarians for treatment decisions to prevent the spread of tuberculosis in elephants.
Assuntos
Elefantes/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Tuberculose/veterinária , Animais , Humanos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologiaRESUMO
To gain insight into a potential age-related predisposition for Escherichia coli pathogen shedding on dairies, this pilot study measured the prevalence of E. coli O157 (ECO157) in the feces of preweaned dairy calves. An aim of this study was to link these outcomes with the concurrent environmental presence of ECO157 and dam ECO157 shedding elucidated in a parallel study. Recto-anal mucosal swabs and a subset of fecal grab samples were collected from calves (2 to 8 weeks of age; n = 399) monthly between December 2013 and June 2014 on three dairies in northern Colorado. A subset of calf dams (n = 111) were also sampled via fecal grab. Concurrently, environmental samples were collected from locations within the vicinity of the calves: farm tractor tires, steering wheels, hutches, buckets, and gloves from the research technicians and the employees involved in calf rearing. The presence of ECO157 and virulence genes was measured in the samples and confirmed via PCR. Of the calves, only 1 (0.25%) of 399 individuals shed during the time period, and the ECO157 strain detected carried no measured virulence genes (eaeA, stx1, and stx2). No difference was seen in detection between the recto-anal mucosal swabs and the fecal grab technique. In contrast, 32% (35 of 111) of the dams shed ECO157, with 1.8% (2 of 111) of the shed isolates containing virulence genes. No ECO157 was detected in the environmental samples. These outcomes demonstrate a disparity between dam and calf ECO157 shedding and indicate that preweaned calves, managed similarly to those of this study, probably have a minor influence on dairy contamination and the transmission of ECO157.
Assuntos
Escherichia coli O157/isolamento & purificação , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Colorado , Infecções por Escherichia coli/epidemiologia , Projetos Piloto , PrevalênciaRESUMO
Escherichia coli O157 (EcO157) infections can lead to serious disease and death in humans. Although the ecology of EcO157 is complex, ruminant animals serve as an important reservoir for human infection. Dairy cattle are unique because they may be a source of contamination for milk, meat, and manure-fertilized crops. Foodborne dairy pathogens such as EcO157 are of primary importance to public health. Antimicrobial resistance (AMR) is a complex phenomenon that complicates the treatment of serious bacterial infections and is of increasing concern. In the face of recommended use restrictions for antimicrobial agents in livestock operations, current AMR patterns in known foodborne pathogens should be documented. The objective of this study was to document AMR patterns in EcO157 isolates from dairies in northern Colorado using antimicrobial agents commonly found on dairies and representative of medically important antimicrobial drug classes. Seventy-five EcO157 isolates were recovered from three dairies. Six isolates were resistant to at least 1 of the 10 tested antimicrobial agents: four were resistant to streptomycin, sulfisoxazole, and tetracycline; one was resistant to streptomycin and tetracycline; and one was resistant to only tetracycline. All resistant isolates were from a single dairy. Overall, a low prevalence (8%) of AMR was observed among the 75 EcO157 isolates. No significant effects on AMR profiles due to virulence genes, parity, or previous antimicrobial treatments within the current lactation period were detected. The results of this study provide background information for future comparative studies investigating AMR trends. Future studies should include more participating farms and more samples and should control for potential confounding factors of AMR that may underlie individual farm variation.
Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Cefalosporinas/farmacologia , Colorado , Indústria de Laticínios , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Fluoroquinolonas/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana/veterinária , Leite/microbiologia , Penicilinas/farmacologia , Carne Vermelha/microbiologia , Sulfonamidas/farmacologia , Tetraciclinas/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologiaRESUMO
Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.
RESUMO
It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.
Assuntos
Resistência Microbiana a Medicamentos , Esterco/microbiologia , Microbiologia do Solo , Resíduos , Águas Residuárias/microbiologia , Animais , Biodiversidade , Canadá , Bovinos , Análise por Conglomerados , Gado , Metagenoma , Metagenômica/métodos , Estados UnidosRESUMO
Antimicrobial resistant determinants (ARDs) can be transmitted from livestock systems through meat products or environmental effluents. The public health risk posed by these two routes is not well understood, particularly in non-pathogenic bacteria. We collected pooled samples from 8 groups of 1741 commercial cattle as they moved through the process of beef production from feedlot entry through slaughter. We recorded antimicrobial drug exposures and interrogated the resistome at points in production when management procedures could potentially influence ARD abundance and/or transmission. Over 300 unique ARDs were identified. Resistome diversity decreased while cattle were in the feedlot, indicating selective pressure. ARDs were not identified in beef products, suggesting that slaughter interventions may reduce the risk of transmission of ARDs to beef consumers. This report highlights the utility and limitations of metagenomics for assessing public health risks regarding antimicrobial resistance, and demonstrates that environmental pathways may represent a greater risk than the food supply.
Assuntos
Criação de Animais Domésticos/métodos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bovinos/microbiologia , Farmacorresistência Bacteriana , Microbiologia Ambiental , Fezes/microbiologia , Animais , Antibacterianos/administração & dosagem , Bactérias/isolamento & purificação , Bovinos/crescimento & desenvolvimento , Estudos LongitudinaisRESUMO
A multiplex single-tube reverse transcription-polymerase chain reaction (RT-PCR) has been developed for the detection and differentiation of vesicular stomatitis viruses (VSV), Indiana 1 and New Jersey, from insect samples. Using this assay, detection of either or both viruses in as little as 20 fg of total RNA from tissue culture was achieved, along with detection of vesicular stomatitis (VS) RNA from macerates containing 2 infected mosquitoes in pools of 10-30 noninfected mosquitoes. Vesicular stomatitis virus was detected by RT-PCR in all culture-positive samples, and detection as low as 4 plaque forming units per milliliter was achieved. Comparison between RT-PCR and tissue culture revealed that RT-PCR was able to detect VSV in a volume of insect macerate averaging almost 100 times less than that required for detection by tissue culture. The reported RT-PCR is a potential valuable tool for rapid and sensitive detection and differentiation of VS in insects because intense work associated with viral isolation, the cytotoxicity of insect extracts, and separate virus identification steps can be avoided. Potential application to detection and differentiation of VSV serotypes from vertebrate hosts is addressed.
Assuntos
Culicidae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Infecções por Rhabdoviridae/veterinária , Estomatite/veterinária , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus , Animais , Técnicas de Cultura , Diagnóstico Diferencial , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Rhabdoviridae/diagnóstico , Sorotipagem , Estomatite/virologia , Vírus da Estomatite Vesicular Indiana/classificação , Vírus da Estomatite Vesicular Indiana/patogenicidadeRESUMO
OBJECTIVE: To determine the percentage of broodmares and foals that shed Clostridium perfringens in their feces and classify the genotypes of those isolates. DESIGN: Prospective cross-sectional study. ANIMALS: 128 broodmares and their foals on 6 equine premises. PROCEDURES: Anaerobic and aerobic bacteriologic cultures were performed on feces collected 3 times from broodmares and foals. All isolates of C. perfringens were genotyped. RESULTS: Clostridium perfringens was isolated from the feces of 90% of 3-day-old foals and 64% of foals at 8 to 12 hours of age. A lower percentage of broodmares and 1- to 2-month-old foals shed C. perfringens in their feces, compared with neonatal foals. Among samples with positive results, C. perfringens type A was the most common genotype identified (85%); C. perfringens type A with the beta2 toxin gene was identified in 12% of samples, C. perfringens type A with the enterotoxin gene was identified in 2.1% of samples, and C. perfringens type C was identified in < 1% of samples. CONCLUSIONS AND CLINICAL RELEVANCE: Clostridium perfringens was identified from the feces of all but 6 foals by 3 days of age and is likely part of the normal microflora of neonatal foals. Most isolates from broodmares and foals are C. perfringens type A; thus, the clinical relevance of culture results alone is questionable. Clostridium perfringens type C, which has been associated with neonatal enterocolitis, is rarely found in the feces of horses.