Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 12(7): e0181490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750054

RESUMO

Effective biologic therapeutics require binding affinities that are fine-tuned to their disease-related molecular target. The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform aids in the selection of mutants that improve/modulate the affinity of antibodies and other biologics. It uses a consensus z-score from three scoring functions and interleaves computational predictions with experimental validation, significantly enhancing the robustness of the design and selection of mutants. The platform was tested on three antibody Fab-antigen systems that spanned a wide range of initial binding affinities: bH1-VEGF-A (44 nM), bH1-HER2 (3.6 nM) and Herceptin-HER2 (0.058 nM). Novel triple mutants were obtained that exhibited 104-, 46- and 32-fold improvements in binding affinity for each system, respectively. Moreover, for all three antibody-antigen systems over 90% of all the intermediate single and double mutants that were designed and tested showed higher affinities than the parent sequence. The contributions of the individual mutants to the change in binding affinity appear to be roughly additive when combined to form double and triple mutants. The new interactions introduced by the affinity-enhancing mutants included long-range electrostatics as well as short-range nonpolar interactions. This diversity in the types of new interactions formed by the mutants was reflected in SPR kinetics that showed that the enhancements in affinities arose from increasing on-rates, decreasing off-rates or a combination of the two effects, depending on the mutation. ADAPT is a very focused search of sequence space and required only 20-30 mutants for each system to be made and tested to achieve the affinity enhancements mentioned above.


Assuntos
Anticorpos/uso terapêutico , Desenho de Fármacos , Proteínas Recombinantes/uso terapêutico , Afinidade de Anticorpos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Mutação/genética , Ressonância de Plasmônio de Superfície , Termodinâmica , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Breast Cancer Res ; 6(5): R514-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15318933

RESUMO

INTRODUCTION: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TbetaRII-AS (transforming growth factor [TGF]-beta type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). METHODS: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-beta families (recombinant human EGF, heregulin-beta1 and TGF-beta1). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-beta1, and they were therefore further investigated for their ability to undergo a TGF-beta-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. RESULTS: We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TbetaRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TbetaRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-beta1, and that all are growth inhibited by TGF-beta1, but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-beta1 treatment. CONCLUSION: We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-beta1-induced EMT.


Assuntos
Animais Geneticamente Modificados , Linhagem Celular Tumoral , Neoplasias Mamárias Animais , Receptor ErbB-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Células Epiteliais , Neoplasias Mamárias Animais/genética , Proteínas de Membrana , Mesoderma , Camundongos/genética , Proteínas Serina-Treonina Quinases/genética , Receptor ErbB-2/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores Virais , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Transgenes
3.
Int J Cancer ; 107(6): 919-28, 2003 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-14601051

RESUMO

In order to clarify the role of TGF-beta in mammary development and tumorigenesis, we investigated the efficacy of full- or partial-length TbetaRII antisense RNA specifically to reduce TbetaRII levels in both in vitro and in vivo model systems. Here we show that the expression of TbetaRII antisense RNA in vitro reduced TbetaRII cell surface expression and inhibited the antiproliferative and transcriptional responses to exogenous TGF-beta. Expression of full-length TbetaRII antisense RNA in a transgenic mouse model under control of the mouse mammary tumor virus promotor resulted in precocious lobuloalveolar development of the mammary gland, a phenotype that resembles that of early pregnancy. These data demonstrate that TbetaRII plays a critical role in maintaining the nondifferentiated character of virgin mammary gland epithelium.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , RNA Antissenso/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Células COS , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Feminino , Genes Reporter , Humanos , Hibridização In Situ , Luciferases/genética , Camundongos , Camundongos Transgênicos , Vison , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator de Crescimento Transformador beta/antagonistas & inibidores
4.
J Biol Chem ; 278(40): 38715-22, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12867422

RESUMO

Transforming growth factor-beta (TGF-beta) receptor-mediated signaling has been proposed to mediate both the beneficial and deleterious roles for this cytokine in amyloid-beta protein (Abeta) function. In order to assess receptor dependence of these events, we used PC12 cell cultures, which are devoid of TGF-beta receptors. Surprisingly, TGF-beta potentiated the neurotoxic effects of the 40-residue Abeta peptide, Abeta-(1-40), in this model suggesting that there may be a direct, receptor-independent interaction between TGF-beta and Abeta-(1-40). Surface plasmon resonance confirmed that TGF-beta binds with high affinity directly to Abeta-(1-40) and electron microscopy revealed that TGF-beta enhances Abeta-(1-40) oligomerization. Immunohistochemical examination of mouse brain revealed that hippocampal CA1 and dentate gyrus, two regions classically associated with Abeta-mediated pathology, lack TGF-beta Type I receptor immunoreactivity, thus indicating that TGF-beta receptor-mediated signaling would not be favored in these regions. Our observations not only provide for a unique, receptor-independent mechanism of action for TGF-beta, but also help to reconcile the literature interpreting the role of TGF-beta in Abeta function. These data support a critical etiological role for this mechanism in neuropathological amyloidoses.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Ligação Competitiva , Linhagem Celular , Dicroísmo Circular , Densitometria , Feminino , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Isoformas de Proteínas , Ratos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA