Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057150

RESUMO

A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review.

2.
Materials (Basel) ; 13(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276519

RESUMO

Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.

3.
ACS Omega ; 4(7): 12028-12035, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460315

RESUMO

Enzymatic modification, using a protease from Bacillus licheniformis (Subtilisin A), was carried out on polyamide 6.6 (PA6.6) fabric to make it more amenable to water-based nanocoatings used to impart electrical conductivity. The modified PA6.6 fibers exhibit a smoother surface, increased hydrophilicity due to more carboxyl and amino groups, and larger ζ-potential relative to unmodified polyamide. With its improved hydrophilicity and surface functionality, the modified textile is better able to accept a water-based nanocoating, composed of multiwalled carbon nanotubes (MWCNT) stabilized by sodium deoxycholate (DOC) and poly(diallyldimethylammonium chloride) (PDDA), deposited via layer-by-layer assembly. Relative to unmodified fabric, the enzymatically modified fibers exhibit lower sheet resistance as a function of PDDA/MWCNT-DOC bilayers deposited. This relatively green technique could be used to impart a variety of useful functionalities to otherwise difficult-to-treat synthetic fibers like polyamide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA