Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(13): 3971-3985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35419694

RESUMO

SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.


Assuntos
Tratamento Farmacológico da COVID-19 , Plantas Medicinais , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Antivirais/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2 , África do Sul , Glicoproteína da Espícula de Coronavírus/química
2.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432195

RESUMO

Diabetes, a prevalent metabolic condition with a wide range of complications, is fast becoming a global health crisis. Herbal medicine and enhanced extracts are some of the therapeutic options used in the management of diabetes mellitus. The plant-derived molecules and their suitable structure modification have given many leads or drugs to the world such as metformin used as an antidiabetic drug. The stem extract of Sclerocarya birrea has been reported as a potent antidiabetic (glucose uptake) agent. However, the bioactive compounds have not been reported from S. birrea for treatment of diabetes. In this study, the spray-dried aqueous leaf extracts of S. birrea were investigated as an antidiabetic agent using a 2-deoxy-glucose (2DG) technique showing good stimulatory effect on glucose uptake in differentiated C2C12 myocytes with % 2DG uptake ranging from 110-180% that was comparable to the positive control insulin. Three compounds were isolated and identified using bioassay-guided fractionation of the spray-dried aqueous extract of S. birrea leaves: myricetin (1), myricetin-3-O-ß-D-glucuronide (2) and quercetin-3-O-ß-D-glucuronide (3). Their chemical structures were determined using NMR and mass spectrometric analyses, as well as a comparison of experimentally obtained data to those reported in the literature. The isolated compounds (1-3) were studied for their stimulatory actions on glucose uptake in differentiated C2C12 myocytes. The three compounds (1, 2 and 3) showed stimulatory effects on the uptake of 2DG in C2C12 myocytes with % 2DG uptake ranging from 43.9-109.1% that was better compared to the positive control insulin. Additionally, this is the first report of the flavonoid glycosides (myricetin-3-O-ß-D-glucuronide) for antidiabetic activity and they are the main bioactive compound in the extract responsible for the antidiabetic activity. This result suggests that the S. birrea leaves have the potential to be developed for treatment of diabetes.


Assuntos
Anacardiaceae , Diabetes Mellitus , Hipoglicemiantes/química , Extratos Vegetais/química , Anacardiaceae/química , Insulina , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo
3.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744961

RESUMO

This work presents the first report on the phytochemical investigation of Harpephyllum caffrum Bernh. gum exudate. A known cardanol, 3-heptadec-12'-Z-enyl phenol (1) and three new alk(en)ylhydroxycyclohexanes, namely, (1R,3R)-1,3-dihydroxy-3-[heptadec-12'(Z)-enyl]cyclohexane (2) (1S,2S,3S,4S,5R)-1,2,3,4,5-pentahydroxy-5-[octadec-13'(Z)-enyl]cyclohexane (3) and (1R,2S,4R)-1,2,4-trihydroxy-4-[heptadec-12'(Z)-enyl]cyclohexane (4) were isolated from the gum. The structures of the compounds were determined by extensive 1D and 2D NMR spectroscopy and HR-ESI-MS data. The ethanolic extract of the gum was found to be the most potent tyrosinase inhibitor with IC50 of 11.32 µg/mL while compounds 2 and 3, with IC50 values of 24.90 and 26.99 µg/mL, respectively, were found to be potential anti-tyrosinase candidates from the gum. Gum exudate may be a potential source for non-destructive harvesting of selective pharmacologically active compounds from plants. The results also provide evidence that H. caffrum gum may find application in cosmetics as a potential anti-tyrosinase agent.


Assuntos
Anacardiaceae , Monofenol Mono-Oxigenase , Cicloexanos , Exsudatos e Transudatos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889346

RESUMO

Amaryllidaceae is a significant source of bioactive phytochemicals with a strong propensity to develop new drugs. The genera Allium, Tulbaghia, Cyrtanthus and Crinum biosynthesize novel alkaloids and other phytochemicals with traditional and pharmacological uses. Amaryllidaceae biomolecules exhibit multiple pharmacological activities such as antioxidant, antimicrobial, and immunomodulatory effects. Traditionally, natural products from Amaryllidaceae are utilized to treat non-communicable and infectious human diseases. Galanthamine, a drug from this family, is clinically relevant in treating the neurocognitive disorder, Alzheimer's disease, which underscores the importance of the Amaryllidaceae alkaloids. Although Amaryllidaceae provide a plethora of biologically active compounds, there is tardiness in their development into clinically pliable medicines. Other genera, including Cyrtanthus and Tulbaghia, have received little attention as potential sources of promising drug candidates. Given the reciprocal relationship of the increasing burden of human diseases and limited availability of medicinal therapies, more rapid drug discovery and development are desirable. To expedite clinically relevant drug development, we present here evidence on bioactive compounds from the genera Allium, Tulgbaghia, Cyrtanthus and Crinum and describe their traditional and pharmacological applications.


Assuntos
Allium , Alcaloides de Amaryllidaceae , Amaryllidaceae , Crinum , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Crinum/química , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
5.
J Nat Prod ; 83(8): 2483-2489, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32786879

RESUMO

Phytochemical investigation of extracts of the stems of Hypoestes aristata led to the isolation of nine lignans that included four known compounds, namely, hinokinin (1), savinin (2), medioresinol (3), and two cubebins (8a,b), three new butyrolactone lignans (4-6), and butyrolactol lignans 7a-c. The structures of the new compounds were established using 1D and 2D NMR and HRESIMS data. The absolute configurations of the new lignans were determined from their ECD data and the Mosher's ester method. This is the first unequivocal assignment of the absolute configuration at C-7 and C-7' of 7- and 7'-hydroxybutyrolactone lignans. The compounds were screened for inhibition of an HIV-1 protease enzyme, and compounds 1 and 6 exhibited moderate activity in this regard.


Assuntos
Acanthaceae/química , Lignanas/farmacologia , Cromatografia Líquida/métodos , Lignanas/isolamento & purificação , Componentes Aéreos da Planta/química , Extração em Fase Sólida , Análise Espectral/métodos
6.
Malar J ; 18(1): 65, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849984

RESUMO

BACKGROUND: Optimal adoption of the malaria transmission-blocking strategy is currently limited by lack of safe and efficacious drugs. This has sparked the exploration of different sources of drugs in search of transmission-blocking agents. While plant species have been extensively investigated in search of malaria chemotherapeutic agents, comparatively less effort has been channelled towards exploring them in search of transmission-blocking drugs. Artemisia afra (Asteraceae), a prominent feature of South African folk medicine, is used for the treatment of a number of diseases, including malaria. In search of transmission-blocking compounds aimed against Plasmodium parasites, the current study endeavoured to isolate and identify gametocytocidal compounds from A. afra. METHODS: A bioassay-guided isolation approach was adopted wherein a combination of solvent-solvent partitioning and gravity column chromatography was used. Collected fractions were continuously screened in vitro for their ability to inhibit the viability of primarily late-stage gametocytes of Plasmodium falciparum (NF54 strain), using a parasite lactate dehydrogenase assay. Chemical structures of isolated compounds were elucidated using UPLC-MS/MS and NMR data analysis. RESULTS: Two guaianolide sesquiterpene lactones, 1α,4α-dihydroxybishopsolicepolide and yomogiartemin, were isolated and shown to be active (IC50 < 10 µg/ml; ~ 10 µM) against both gametocytes and intra-erythrocytic asexual P. falciparum parasites. Interestingly, 1α,4α-dihydroxybishopsolicepolide was significantly more potent against late-stage gametocytes than to early-stage gametocytes and intra-erythrocytic asexual P. falciparum parasites. Additionally, both isolated compounds were not overly cytotoxic against HepG2 cells in vitro. CONCLUSION: This study provides the first instance of isolated compounds from A. afra against P. falciparum gametocytes as a starting point for further investigations on more plant species in search of transmission-blocking compounds.


Assuntos
Antiprotozoários/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem
7.
BMC Complement Altern Med ; 18(1): 54, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415712

RESUMO

BACKGROUND: Degradation of components of the extracellular matrix such as elastin and collagen by elastase and collagenase accelerates skin aging. Phytochemicals that inhibit the activity of these enzymes can be developed as anti-aging ingredients. In this study, an investigation of the anti-aging properties of Sclerocarya birrea (A. Rich.) Hochst (Marula) extracts was conducted in vitro with the aim of developing chemically characterized anti-aging ingredients. METHODS: Marula stems, leaves and fruits were extracted using methanol:dichloromethane (DCM) (1:1). The stems were later extracted using acetone, ethanol, methanol:DCM (1:1) and sequentially using hexane, DCM, ethyl acetate and methanol. The stem ethanol extract was defatted and concentrated. Elastase and collagenase inhibition activities of these extracts and Marula oil were determined using spectrophotometric methods. The chemical profile of the ethanolic stem extract was developed using Ultra-performance-liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with MassLynx software. Pure standards were used to confirm the identity of major compounds and were screened for anti-elastase and anti-collagenase activity. RESULTS: Marula stems extracts were the most active as they exhibited anti-elastase activity comparable to that of elafin (> 88%) and anti-collagenase activity as potent as EDTA (> 76%). The leaf extract had moderate anti-elastase activity (54%) but was inactive agains collagenase. Marula fruits and oil exhibited limited activity in both assays. The ethanolic extract of Marula stems was the most suitable based on its acceptability to the cosmetic industry and its anti-collagenase activity (99%). Defatting and concentration improved its antiaging activity and lowered the colour intensity. Six compounds have been tentatively identified in the chemical profile of the ethanolic extract of Marula stems of which four; quinic acid, catechin, epigallocatechin gallate and epicatechin gallate have been confirmed using pure standards. Epigallocatechin gallate and epicatechin gallate were as potent (p < 0.05) as EDTA at 5 µg/ml in the anti-collagenase assay. CONCLUSIONS: The ethanolic extract of Marula stems can be developed into an anti-aging ingredient as it exhibited very good in vitro anti-aging activity and its chemical profile has been developed. Epicatechin gallate and epigallocatechin gallate contribute to the anti-aging activity of Marula stem ethanol extract.


Assuntos
Anacardiaceae/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Elastase Pancreática/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Envelhecimento da Pele/efeitos dos fármacos
8.
Heliyon ; 10(3): e24659, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317983

RESUMO

The in-vitro synthesis of bio-compounds via fermentation is a promising route for bioactive molecules intended for disease control and management. Therefore, this study evaluated the effect of fermentation on the antioxidants, antihyperglycemic and anti-inflammatory properties and the resultant chemometric phytochemical profiles of unripe plantain fruits. The results revealed that Escherichia coli and Propionibacterium spp. are suspected as the key fermenters. The E coli showed negative results to the pathogenicity test; Propionibacterium appeared to be opportunistic. A significant increase in the total polyphenols and protein and decreased flavonoids was recorded in the phytochemical profile of the methanolic extract of the fermented unripe plantain pulp; however, the ascorbic acid content was not significantly altered. The 1H NMR fingerprint showed that there is a closely related chemical shift among the shorter fermentation time (days 2-6) and the unfermented, while the more extended fermentation periods (days 7-12) with enhanced bioactivities were closely related based on the chemometrics analyses. Furthermore, the UPLC-QTOF-MS analysis annotated the presence of bioactive compounds in the day-9 fermented sample: polyhydroxy glucose conjugates (3-Methoxy-4-hydroxyphenyl 6-O-(3,4,5-trihydroxybenzoyl)-beta-D-glucopyranoside), short chain peptide (leucyl-glycyl-glycine), amino acid derivatives (4-Aminophenylalanine, and N-Acetylhistidine), linear and cyclic fatty acid derivatives (palmitoyl putrescine, ricinoleic acid, phytosphingosine, gabalid, rubrenoic acid, 2-aminocyclopentanecarboxylic and cystodienioc acid). The synergistic effect of these newly formed compounds and the increase in the phenolic content of the day-9 fermented unripe plantain may account for its more potent antioxidant, anti-inflammatory and antihyperglycemic activity. Therefore, the products obtained from the day 9 fermentation of unripe plantain pulp may serve as potential nutraceutical agents against gastro-enteric sugar digestion and absorption and sugar-induced oxidative stress, inflammation and metabolic disease.

9.
Sci Rep ; 14(1): 14660, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918410

RESUMO

The emergence of drug-resistant Mycobacterium tuberculosis strains is a threat to global health necessitating the discovery of novel chemotherapeutic agents. Natural products drug discovery, which previously led to the discovery of rifamycins, is a valuable approach in this endeavor. Against this backdrop, we set out to investigate the in vitro antimycobacterial properties of medicinal plants from Ghana and South Africa, evaluating 36 extracts and their 252 corresponding solid phase extraction (SPE) generated fractions primarily against the non-pathogenic Mycobacterium smegmatis and Mycobacterium aurum species. The most potent fraction was further evaluated in vitro against infectious M. tuberculosis strain. Crinum asiaticum (bulb) (Amaryllidaceae) emerged as the most potent plant species with specific fractions showing exceptional, near equipotent activity against the non-pathogenic Mycobacterium species (0.39 µg/ml ≤ MIC ≤ 25 µg/ml) with one fraction being moderately active (MIC = 32.6 µg/ml) against M. tuberculosis. Metabolomic analysis led to the identification of eight compounds predicted to be active against M. smegmatis and M. aurum. In conclusion, from our comprehensive study, we generated data which provided an insight into the antimycobacterial properties of Ghanaian and South African plants. Future work will be focused on the isolation and evaluation of the compounds predicted to be active.


Assuntos
Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Extratos Vegetais , Plantas Medicinais , Plantas Medicinais/química , África do Sul , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gana , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química
10.
Front Pharmacol ; 15: 1308913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533263

RESUMO

Introduction: A significant number of the South African population still rely on traditional medicines (TM) as their primary healthcare due to their belief in their holistic healing and immune-boosting properties. However, little to no scientific data is available on the effects of most TM products on cytokine and cellular biomarkers of the immune response. Here, we evaluated the impact of traditional medicine [Product Nkabinde (PN)] in inducing cellular and cytokine biomarkers of inflammation in peripheral blood mononuclear cells (PBMCs) from eight healthy volunteers. Methods: PN was supplied by a local Traditional Health Practitioner (THP). The IC50 (half maximum concentration) of the standardized extract on isolated PBMCs was established using the cell viability assay over 24 h of incubation. Luminex and flow cytometry assays were used to measure cytokine and cellular levels in PBMCs stimulated with PN and/or PHA over 24, 48, and 72 h, respectively. Results: The IC50 concentration of PN in treated PBMCs was established at 325.3 µg/mL. In the cellular activation assay, the percentages of CD38-HLA-DR + on total CD4+ T cells were significantly increased in PBMCs stimulated with PN compared to unstimulated controls after 24 h (p = 0.008). PN significantly induced the production of anti-inflammatory IL-10 (p = 0.041); proinflammatory cytokines IL-1α (p = 0.003), TNF-α (p < 0.0001); and chemokine MIP-1ß (p = 0.046) compared to the unstimulated control after 24 h. At 48 h incubation, the production of proinflammatory cytokines IL-1α (p = 0.034) and TNF-α (p = 0.011) were significantly induced following treatment with PN. Conclusion: We conclude that the PN possesses in vitro immunomodulatory properties that may influence immune and inflammatory responses. More studies using PN are needed to further understand key parameters mediating induction, expression, and regulation of the immune response in the context of pathogen-associated infections.

11.
ACS Omega ; 9(7): 8478-8489, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405442

RESUMO

Globally, antibiotics are facing fierce resistance from multidrug-resistant bacterial strains. There is an urgent need for eco-friendly alternatives. Though insects are important targets for antimicrobial peptides, it has received limited research attention. This study investigated the impact of waste substrates on the production of antibacterial agents in black soldier fly (Hermetia illucens L.) larvae (HIL) and their implications in the suppression of pathogens [Bacillus subtilis (ATCC 6051), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), and Escherichia coli (ATCC 25922)]. The 20% acetic acid (AcOH) extract from market waste had the highest antibacterial activity with an inhibition zone of 17.00 mm, followed by potato waste (15.02 mm) against S. aureus. Hexane extract from HIL raised on market waste also showed a significant inhibitory zone (13.06 mm) against B. subtilis. .Minimum inhibitory concentration (MIC) values recorded were 25 mg/mL against all test pathogens. The fastest time-kill of 20% AcOH extract was 4 h againstB. subtilis, E. coli, ,andP. aeruginosa. Lauric acid was also identified as the dominant component of the various hexane extracts with concentrations of 602.76 and 318.17 µg/g in HIL reared on potato and market waste, respectively. Energy from the market waste substrate correlated significantly (r = 0.97) with antibacterial activities. This study highlights the key role of substrate quality and extraction methods for enhancing the production of antibacterial agents in HIL, thus providing new insights into the development of potential drugs to overcome the alarming concerns of antimicrobial resistance.

13.
Planta Med ; 79(6): 492-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23512498

RESUMO

A library of 206 extracts from selected South African plants was screened in vitro against a panel of protozoan parasites, Plasmodium falciparum, Trypanosoma brucei rhodesiense, and Leishmania donovani. A CH2Cl2/MeOH (1 : 1) extract of Abrus precatorius L. ssp. africanus strongly inhibited P. falciparum (98 %), T. b. rhodesiense (100 %), and L. donovani (76 %) when tested at a concentration of 10.0 µg/mL. The active constituents were tracked by HPLC-based activity profiling and isolated by preparative and semipreparative RP-HPLC chromatography. Structures were established by HR-ESIMS, and 1D and 2D NMR (1H, 13C, COSY, HMBC, HSQC, and NOE difference spectroscopy). Five compounds were obtained and identified as two isoflavan hydroquinones, abruquinone H (1) and abruquinone G (2), and three isoflavan quinones, abruquinone I (3), abruquinone B (4), and 7,8,3''5'-tetramethoxyisoflavan-1',4'-quinone (5). Compounds 1 and 3 were new natural products. The absolute configuration of compounds was determined by comparison of electronic circular dichroism spectra with calculated ECD data. Compounds 3 and 4 showed strong activity against T. b. rhodesiense (IC50 values of 0.30 and 0.16 µM, respectively) and good selectivity (selectivity indices of 73.7 and 50.5, respectively).


Assuntos
Abrus/química , Antiprotozoários/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinonas/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ressonância Magnética Nuclear Biomolecular , Quinonas/química , Quinonas/isolamento & purificação
14.
Planta Med ; 79(14): 1380-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23929246

RESUMO

Two hundred and seven extracts were prepared from sixty plants from South Africa and screened for in vitro activity against Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum. For the 21 extracts which inhibited the growth of one or more parasites with more than 95 % at 10 µg/mL, the IC50 values against all four protozoal parasites and cytotoxic IC50 values against L6 myoblasts were determined. Amongst the most notable results are the activities of Psoralea pinnata (IC50 of 0.15 µg/mL), Schkuhria pinnata (2.04 µg/mL), and Vernonia mespilifolia (1.01 µg/mL) against Trypansoma brucei rhodesiense. HPLC-based activity profiling was used to identify the active constituents in the extracts, and the germacranolide sesquiterpene lactones schkuhrin I and II from S. pinnata, and cynaropicrin from V. mespilifolia were identified, with IC50 values of 0.9, 1.5, and 0.23 µM, respectively.


Assuntos
Antiprotozoários/farmacologia , Asteraceae/química , Lactonas/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos/farmacologia , Vernonia/química , Antimaláricos/farmacologia , Humanos , Concentração Inibidora 50 , Lactonas/análise , Leishmania donovani/efeitos dos fármacos , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Sesquiterpenos/análise , Sesquiterpenos de Germacrano/análise , África do Sul , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
15.
Nat Prod Res ; : 1-13, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712398

RESUMO

Three new steroids, turranin M, N and O (1-3), together with four known limonoids, nymania 1 (4), rubralin B (5), aphapolynin C (6) and Trichillia substance Tr B (7), were isolated from the leaves of Turraea obtusifolia. Their chemical structures were elucidated using NMR and MS. Rubralin B (5) displayed good activity against the asexual parasites from the drug sensitive Plasmodium falciparum NF54 strain with an IC50 value of 3.47 µg/mL (4.57 µM), nymania 1 (4) showed a weak activity (IC50 13.36 µg/mL (19.40 µM)) and the rest of compounds had IC50 > 20 µg/mL.

16.
Nat Prod Bioprospect ; 13(1): 35, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798547

RESUMO

The antimalarial drug-resistance conundrum which threatens to reverse the great strides taken to curb the malaria scourge warrants an urgent need to find novel chemical scaffolds to serve as templates for the development of new antimalarial drugs. Plants represent a viable alternative source for the discovery of unique potential antiplasmodial chemical scaffolds. To expedite the discovery of new antiplasmodial compounds from plants, the aim of this study was to use phylogenetic analysis to identify higher plant orders and families that can be rationally prioritised for antimalarial drug discovery. We queried the PubMed database for publications documenting antiplasmodial properties of natural compounds isolated from higher plants. Thereafter, we manually collated compounds reported along with plant species of origin and relevant pharmacological data. We systematically assigned antiplasmodial-associated plant species into recognised families and orders, and then computed the resistance index, selectivity index and physicochemical properties of the compounds from each taxonomic group. Correlating the generated phylogenetic trees and the biological data of each clade allowed for the identification of 3 'hot' plant orders and families. The top 3 ranked plant orders were the (i) Caryophyllales, (ii) Buxales, and (iii) Chloranthales. The top 3 ranked plant families were the (i) Ancistrocladaceae, (ii) Simaroubaceae, and (iii) Buxaceae. The highly active natural compounds (IC50 ≤ 1 µM) isolated from these plant orders and families are structurally unique to the 'legacy' antimalarial drugs. Our study was able to identify the most prolific taxa at order and family rank that we propose be prioritised in the search for potent, safe and drug-like antimalarial molecules.

17.
Nat Prod Bioprospect ; 13(1): 37, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821775

RESUMO

The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria. Urgent measures need to be taken to curb this impending challenge. The higher plant-derived sesquiterpene, quinoline alkaloids, and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed. Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed. The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P. falciparum. To identify these novel scaffolds, we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data. Natural products were assigned to different structural classes using NPClassifier. To identify the most promising chemical scaffolds, we then correlated natural compound class with bioactivity and other data, namely (i) potency, (ii) resistance index, (iii) selectivity index and (iv) physicochemical properties. We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data. From this analysis we identified the top-ranked natural product pathway as the alkaloids. The top three ranked super classes identified were (i) pseudoalkaloids, (ii) naphthalenes and (iii) tyrosine alkaloids and the top five ranked classes (i) quassinoids (of super class triterpenoids), (ii) steroidal alkaloids (of super class pseudoalkaloids) (iii) cycloeudesmane sesquiterpenoids (of super class triterpenoids) (iv) isoquinoline alkaloids (of super class tyrosine alkaloids) and (v) naphthoquinones (of super class naphthalenes). Launched chemical space of these identified classes of compounds was, by and large, distinct from that of 'legacy' antimalarial drugs. Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs. These molecules have the potential to be developed into new antimalarial drugs.

18.
Malar J ; 11: 320, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22963538

RESUMO

BACKGROUND: This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. METHODS: Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol) (1:1), methanol and purified water) of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo), an effective emulsifiable concentrate larvicide. RESULTS: Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. CONCLUSION: The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Rutaceae/química , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Larva/efeitos dos fármacos , África do Sul , Análise de Sobrevida
19.
J Nat Prod ; 75(10): 1712-6, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23002902

RESUMO

Two new anti-HIV xanthones, 6,7,11-trihydroxy-10-methoxy-9-(7-methoxy-3-methyl-1-oxoisochroman-5-yl)-2-methyl-12-oxo-12H-benzo[b]xanthene-4-carboxylic acid (1) and 6,7-dihydroxy-10,11-dimethoxy-9-(7-methoxy-3-methyl-1-oxoisochroman-5-yl)-2-methyl-12-oxo-12H-benzo[b]xanthene-4-carboxylic acid (2), and a new hexadecahydrochrysen-3-ol (3) were isolated from the tubers of Pyrenacantha kaurabassana. Compounds 1 and 2 showed moderate anti-HIV activity when tested in the deCIPhR assay on HIV virus type NL4-3, with IC50 values of 21 and 2 µg/mL, respectively.


Assuntos
Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Boraginaceae/química , Xantonas/isolamento & purificação , Xantonas/farmacologia , Fármacos Anti-HIV/química , HIV , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo , Tanzânia , Xantonas/química
20.
J Ethnopharmacol ; 297: 115551, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35850311

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aloe marlothii A.Berger (Xanthorrhoeaceae) is indigenous to southern African countries where its aqueous preparations are used in traditional medicine to treat several ailments including hypertension, respiratory infections, venereal diseases, chest pain, sore throat and malaria. AIM OF THE STUDY: The aims of this study were as follows: (i) isolate and identify the antiplasmodial active compounds in A. marlothii roots. As the water extract was previously inactive, the dichloromethane:methanol (DCM:MeOH) (1:1) was used, (ii) examine the activity of the isolated compounds against Plasmodium falciparum asexual blood stage (ABS) parasites as well as for transmission-blocking activity against gametocytes and gametes, and (iii) to use in silico tools to predict the target(s) of the active molecules. MATERIALS AND METHODS: The crude DCM:MeOH (1:1) extract of A. marlothii roots was fractionated on a reverse phase C8 column, using a positive pressure solid-phase extraction (ppSPE) workstation to produce seven fractions. The resulting fractions and the crude DCM:MeOH extract were tested in vitro against P. falciparum (NF54) ABS parasites using the malaria SYBR Green I based-fluorescence assay. Flash silica chromatography and mass-directed preparative high-performance liquid chromatography were utilised to isolate the active compounds. The isolated compounds were evaluated in vitro against P. falciparum asexual (NF54 and K1 strains) and sexual (gametocytes and gametes) stage parasites. Molecular docking was then used for the in silico prediction of targets for the isolated active compounds in P. falciparum. RESULTS: The crude extract and two SPE fractions displayed good antiplasmodial activity with >97% and 100% inhibition of ABS parasites proliferation at 10 and 20 µg/mL, respectively. Following UPLC-MS analysis of these active fractions, a targeted purification resulted in the isolation of six compounds identified as aloesaponol I (1), aloesaponarin I (2), aloesaponol IV (3), ß-sorigenin-1-O-methylether (4), emodin (5), and chrysophanol (6). Aloesaponarin I (2) was the most bioactive, compared to other isolated constituents, against P. falciparum ABS parasites exhibiting equipotency against the drug-sensitive (NF54) (IC50 = 1.54 µg/mL (5 µM)) and multidrug-resistant (K1) (IC50 = 1.58 µg/mL (5 µM)) strains. Aloesaponol IV (3) showed pronounced activity against late-stage (>90% stage IV/V) gametocytes (IC50 = 6.53 µg/mL (22.6 µM)) demonstrating a 3-fold selective potency towards these sexual stages compared to asexual forms of the parasite (IC50 = 19.77 ± 6.835 µg/mL (68 µM)). Transmission-blocking potential of aloesaponol IV (3) was validated by in vitro inhibition of exflagellation of male gametes (94% inhibition at 20 µg/mL). In silico studies identified ß-hematin and DNA topoisomerase II as potential biological targets of compounds 2 and 3, respectively. CONCLUSION: The findings from our study substantiate the traditional use of A. marlothii to treat malaria. To our knowledge, this study has provided the first report on the isolation and identification of antiplasmodial compounds from A. marlothii roots. Furthermore, our study has provided the first report on the transmission-blocking potential of one of the compounds from the genus Aloe, motivating for the investigation of other species within this genus for their potential P. falciparum transmission-blocking activity.


Assuntos
Aloe , Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Antimaláricos/uso terapêutico , Cromatografia Líquida , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , Plasmodium falciparum , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA