RESUMO
It is thought that despite highly variable phenotypic expression, 70-80% of all epileptic cases are caused by one or more genetic mutations. Next generation sequencing technologies, such as whole exome sequencing (WES), can be used in a diagnostic or research setting to identify genetic mutations which may have significant prognostic implications for patients and their families. In this study, 398 genes associated with epilepsy or recurrent seizures were stratified into tiers based on genotype-phenotype concordance, tissue gene expression, frequency of affected individuals with mutations and evidence from functional and family studies. WES was completed on 14 DNA samples (2 with known mutations in SCN1A and 12 with no known mutations) from individuals diagnosed with epilepsy using an Ion AmpliSeq approach. WES confirmed positive SCN1A mutations in two samples. In n = 5/12 samples (S-3 to -14) we identified potentially causative mutations across five different genes. S-5 was identified to have a novel missense mutation in CCM2; S-6 a novel frameshift mutation identified in ADGRV1; S-10 had a previously reported pathogenic mutation in PCDH19, whilst a novel missense mutation in PCDH19 was shown in S-12; and S-13 identified to have separate missense mutations in KCNA2 and NPRL3. The application of WES followed by a targeted variant prioritization approach allowed for the discovery of potentially causative mutations in our cohort of previously undiagnosed epilepsy patients.
Assuntos
Biomarcadores/análise , Epilepsia/diagnóstico , Epilepsia/genética , Sequenciamento do Exoma/métodos , Exoma/genética , Mutação , Adolescente , Adulto , Caderinas/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Proteínas Ativadoras de GTPase/genética , Testes Genéticos/métodos , Humanos , Lactente , Canal de Potássio Kv1.2/genética , Masculino , Prognóstico , ProtocaderinasRESUMO
BACKGROUND: In 2016, a large meta-analysis brought the number of susceptibility loci for migraine to 38. While sub-type analysis for migraine without aura (MO) and migraine with aura (MA) found some loci showed specificity to MO, the study did not test the loci with respect to other subtypes of migraine. This study aimed to test the hypothesis that single nucleotide polymorphisms (SNPs) robustly associated with migraine are individually or collectively associated with menstrual migraine (MM). METHODS: Genotyping of migraine susceptibility SNPs was conducted using the Agena MassARRAY platform on DNA samples from 235 women diagnosed with menstrual migraine as per International Classification for Headache Disorders II (ICHD-II) criteria and 140 controls. Alternative genotyping methods including restriction fragment length polymorphism, pyrosequencing and Sanger sequencing were used for validation. Statistical analysis was performed using PLINK and SPSS. RESULTS: Genotypes of 34 SNPs were obtained and investigated for their potential association with menstrual migraine. Of these SNPs, rs2506142 located near the neuropilin 1 gene (NRP1), was found to be significantly associated with menstrual migraine (p = 0.003). Genomic risk scores were calculated for all 34 SNPs as well as a subset of 7 SNPs that were nearing individual significance. Overall, this analysis suggested these SNPs to be weakly predictive of MM, but of no prognostic or diagnostic value. CONCLUSIONS: Our results suggest that NRP1 may be important in the etiology of MM. It also suggests some genetic commonality between common migraine subtypes (MA and MO) and MM. The identification of associated SNPs may be the starting point to a better understanding of how genetic factors may contribute to the menstrual migraine sub-type.
Assuntos
Distúrbios Menstruais/genética , Transtornos de Enxaqueca/genética , Neuropilina-1/genética , Adolescente , Adulto , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , Adulto JovemRESUMO
Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.
Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Glomerulosclerose Segmentar e Focal/genética , Bloqueio Cardíaco/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Austrália , Criança , Pré-Escolar , Exoma , Feminino , Genes Ligados ao Cromossomo X , Ligação Genética , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , N-Acetilglucosaminiltransferases/genética , Especificidade de Órgãos , Linhagem , Análise de Sequência de DNA , Adulto JovemRESUMO
OBJECTIVE: A number of observations have suggested that brain-derived neurotrophic factor (BDNF) plays a role in migraine pathophysiology. This study investigates whether variants in the BDNF gene are associated with migraine in an Australian case-control population. BACKGROUND: BDNF has an important role in neural growth, development, and survival in the central nervous system and is an important modulator of central and peripheral pain responses. Variants in BDNF, in particular the functional Val66Met polymorphism (rs6265), have been found to be associated with a number of psychiatric disorders, cognitive function, and obesity. As BDNF has been found to be differentially expressed in a number of aspects related to migraine, we tested for association between single nucleotide polymorphisms (SNPs) in BDNF and migraine. METHODS: Five SNPs in the BDNF locus (rs1519480, rs6265, rs712507, rs2049046, and rs12273363) were genotyped initially in a cohort of 277 migraine cases, including 172 diagnosed with migraine with aura (MA) and 105 with migraine without aura (MO), and 277 age- and sex-matched controls. Three of these SNPs (rs6265, rs2049046, and rs12273363) were subsequently genotyped in a second cohort of 580 migraineurs, including 473 diagnosed with MA and 105 with MO, and 580 matched controls. RESULTS: BDNF SNPs rs1519480, rs6265, rs712507, and rs12273363 were not significantly associated with migraine. However, rs2049046 showed a significant association with migraine, and in particular, MA in the first cohort. In the second cohort, although an increase in the rs2049046 T-allele frequency was observed in migraine cases, and in both MA and MO subgroups, it was not significantly different from controls. Analysis of data combined from both cohorts for rs2049046 showed significant differences in the genotypic and allelic distributions for this marker in both migraine and the MA subgroup. CONCLUSION: This study confirmed previous studies that the functional BDNF SNP rs6265 (Val66Met) is not associated with migraine. However, we found that rs2049046, which resides at the 5' end of one the BDNF transcripts, may be associated with migraine, suggesting that further investigations of this SNP may be warranted.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Predisposição Genética para Doença/genética , Transtornos de Enxaqueca/genética , Austrália , Estudos de Casos e Controles , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND: Oestrogen receptor 1 ( ESR1) is located in region 6q25.1 and encodes a ligand-activated transcription factor composed of several domains important for hormone binding and transcription activation. Progesterone receptor ( PGR) is located in 11q22-23 and mediates the role of progesterone interacting with different transcriptional co-regulators. ESR1 and PGR have previously been implicated in migraine susceptibility. Here, we report the results of an association study of these genes in a migraine pedigree from the genetic isolate of Norfolk Island, a population descended from a small number of Isle of Man "Bounty Mutineer" and Tahitian founders. METHODS: A significant number of molecular markers in the ESR1 (143) and PGR (43) genes were evaluated in a sample of 285 related individuals (135 males; 150 females). A pedigree-based analysis in the GenABEL package was used to analyse the results. RESULTS AND CONCLUSIONS: A total of 10 markers in the ESR1 gene showed association with migraine ( P < 0.05) in the Norfolk Island population. No association was detected with PGR . Three haplotypes in ESR1 were found to be associated with migraine ( P = 0.004, 0.03, 0.005). Future genetic studies in larger populations and expression analysis are required to clarify the role of ESR1 in migraine susceptibility.
Assuntos
Receptor alfa de Estrogênio/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Transtornos de Enxaqueca/genética , Polimorfismo Genético/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Haplótipos/genética , Humanos , Masculino , Melanesia/epidemiologia , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/epidemiologia , LinhagemRESUMO
BACKGROUND: The excitatory neurotransmitter glutamate has been implicated in both the hyperexcitability required for cortical spreading depression as well as activation of the trigeminovascular system required for the allodynia associated with migraine. Polymorphisms in the glutamate receptor ionotropic amino-3-hydroxy-5-methyl-4-isoxazole-propionin acid 1 (GRIA1) and GRIA3 genes that code for 2 of 4 subunits of the glutamate receptor have been previously associated with migraine in an Italian population. In addition, the GRIA3 gene is coded within a previously identified migraine susceptibility locus at Xq24. This study investigated the previously associated polymorphisms in both genes in an Australian case-control population. METHODS: Variants in GRIA1 and GRIA3 were genotyped in 472 unrelated migraine cases and matched controls, and data were analyzed for association. RESULTS: Analysis showed no association between migraine and the GRIA1 gene. However, association was observed with the GRIA3 single nucleotide polymorphism (SNP) rs3761555 (P=.008). CONCLUSION: The results of this study confirmed the previous report of association at the rs3761555 SNP within the migraine with aura subgroup of migraineurs. However, the study identified association with the inverse allele suggesting that rs3761555 may not be the causative SNP but is more likely in linkage disequilibrium with another causal variant in both populations. This study supports the plethora of evidence suggesting that glutamate dysfunction may contribute to migraine susceptibility, warranting further investigation of the glutamatergic system and particularly of the GRIA3 gene.
Assuntos
Estudos de Associação Genética/métodos , Transtornos de Enxaqueca/epidemiologia , Transtornos de Enxaqueca/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de AMPA/genética , Austrália/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Transtornos de Enxaqueca/diagnósticoRESUMO
Migraine is classified by the World Health Organization (WHO) as being one of the top 20 most debilitating diseases. According to the neurovascular hypothesis, neuroinflammation may promote the activation and sensitisation of meningeal nociceptors, inducing the persistent throbbing headache characterized in migraine. The tumor necrosis factor (TNF) gene cluster, made up of TNFα, lymphotoxin α (LTA), and lymphotoxin ß (LTB), has been implicated to influence the intensity and duration of local inflammation. It is thought that sterile inflammation mediated by LTA, LTB, and TNFα contributes to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Previous studies have investigated variants within the TNF gene cluster region in relation to migraine susceptibility, with largely conflicting results. The aim of this study was to expand on previous research and utilize a large case-control cohort and range of variants within the TNF gene cluster to investigate the role of the TNF gene cluster in migraine. Nine single nucleotide polymorphisms (SNPs) were selected for investigation as follows: rs1800683, rs2229094, rs2009658, rs2071590, rs2239704, rs909253, rs1800630, rs1800629, and rs3093664. No significant association with migraine susceptibility was found for any of the SNPs tested, with further testing according to migraine subtype and gender also showing no association for disease risk. Haplotype analysis showed that none of the tested haplotypes were significantly associated with migraine.
Assuntos
Citocinas/genética , Predisposição Genética para Doença , Mediadores da Inflamação/metabolismo , Linfotoxina-alfa/genética , Transtornos de Enxaqueca/genética , Polimorfismo de Nucleotídeo Único/genética , Fator de Necrose Tumoral alfa/genética , Estudos de Casos e Controles , Feminino , Humanos , MasculinoRESUMO
Migraine is a common neurological disorder with a strong genetic basis. However, the complex nature of the disorder has meant that few genes or susceptibility loci have been identified and replicated consistently to confirm their involvement in migraine. Approaches to genetic studies of the disorder have included analysis of the rare migraine subtype, familial hemiplegic migraine with several causal genes identified for this severe subtype. However, the exact genetic contributors to the more common migraine subtypes are still to be deciphered. Genome-wide studies such as genome-wide association studies and linkage analysis as well as candidate genes studies have been employed to investigate genes involved in common migraine. Neurological, hormonal and vascular genes are all considered key factors in the pathophysiology of migraine and are a focus of many of these studies. It is clear that the influence of individual genes on the expression of this disorder will vary. Furthermore, the disorder may be dependent on gene--gene and gene--environment interactions that have not yet been considered. In addition, identifying susceptibility genes may require phenotyping methods outside of the International Classification of Headache Disorders II criteria, such as trait component analysis and latent class analysis to better define the ambit of migraine expression.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Transtornos de Enxaqueca/genética , Ligação Genética , Predisposição Genética para Doença , Humanos , Transtornos de Enxaqueca/classificaçãoRESUMO
Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci.An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1 × 10(-5)) ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92 × 10(-4)), whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65 × 10(-4)). Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women's Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05).Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63 × 10(-5)) is located within the 5'UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.