Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 158, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429693

RESUMO

BACKGROUND AND AIMS: Intercropping is an agriculture system used to enhance the efficiency of resource utilization and maximize crop yield grown under environmental stress such as salinity. Nevertheless, the impact of intercropping forage legumes with annual cereals on soil salinity remains unexplored. This research aimed to propose an intercropping system with alfalfa (Medicago sativa)/sea barley (Hordeum marinum) to explore its potential effects on plant productivity, nutrient uptake, and soil salinity. METHODS: The experiment involved three harvests of alfalfa and Hordeum marinum conducted under three cropping systems (sole, mixed, parallel) and subjected to salinity treatments (0 and 150 mM NaCl). Agronomical traits, nutrient uptake, and soil properties were analyzed. RESULTS: revealed that the variation in the measured traits in both species was influenced by the cultivation mode, treatment, and the interaction between cultivation mode and treatment. The cultivation had the most significant impact. Moreover, the mixed culture (MC) significantly enhanced the H. marinum and M. sativa productivity increasing biomass yield and development growth under salinity compared to other systems, especially at the second harvest. Furthermore, both intercropping systems alleviated the nutrient uptake under salt stress, as noted by the highest levels of K+/Na+ and Ca2+/Mg2+ ratios compared to monoculture. However, the intercropping mode reduced the pH and the electroconductivity (CEC) of the salt soil and increased the percentage of organic matter and the total carbon mostly with the MC system. CONCLUSIONS: Intercropped alfalfa and sea barely could mitigate the soil salinity, improve their yield productivity, and enhance nutrient uptake. Based on these findings, we suggest implementing the mixed-culture system for both target crops in arid and semi-arid regions, which further promotes sustainable agricultural practices.


Assuntos
Hordeum , Solo , Solo/química , Medicago sativa , Agricultura , Produtos Agrícolas
2.
Plant Pathol J ; 39(2): 171-180, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37019827

RESUMO

Spring black stem and leaf spot, caused by Phoma medicaginis, is an issue in annual Medicago species. Therefore, in this study, we analyzed the response to P. medicaginis infection in a collection of 46 lines of three annual Medicago species (M. truncatula, M. ciliaris, and M. polymorpha) showing different geographic distribution in Tunisia. The reaction in the host to the disease is explained by the effects based on plant species, lines nested within species, treatment, the interaction of species × treatment, and the interaction of lines nested within species × treatment. Medicago ciliaris was the least affected for aerial growth under infection. Furthermore, the largest variation within species was found for M. truncatula under both conditions. Principal component analysis and hierarchical classification showed that M. ciliaris lines formed a separate group under control treatment and P. medicaginis infection and they are the most vigorous in growth. These results indicate that M. ciliaris is the least susceptible in response to P. medicaginis infection among the three Medicago species investigated here, which can be used as a good candidate in crop rotation to reduce disease pressure in the field and as a source of P. medicaginis resistance for the improvement of forage legumes.

3.
Plants (Basel) ; 10(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685923

RESUMO

Medicago truncatula is a forage crop of choice for farmers, and it is a model species for molecular research. The growth and development and subsequent yields are limited by water availability mainly in arid and semi-arid regions. Our study aims to evaluate the morpho-physiological, biochemical and molecular responses to water deficit stress in four lines (TN6.18, JA17, TN1.11 and A10) of M. truncatula. The results showed that the treatment factor explained the majority of the variation for the measured traits. It appeared that the line A10 was the most sensitive and therefore adversely affected by water deficit stress, which reduced its growth and yield parameters, whereas the tolerant line TN6.18 exhibited the highest root biomass production, a significantly higher increase in its total protein and soluble sugar contents, and lower levels of lipid peroxidation with greater cell membrane integrity. The expression analysis of the DREB1B gene using RT-qPCR revealed a tissue-differential expression in the four lines under osmotic stress, with a higher induction rate in roots of TN6.18 and JA17 than in A10 roots, suggesting a key role for DREB1B in water deficit tolerance in M. truncatula.

4.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924007

RESUMO

We used an integrated morpho-physiological, biochemical, and genetic approach to investigate the salt responses of four lines (TN1.11, TN6.18, JA17, and A10) of Medicago truncatula. Results showed that TN1.11 exhibited a high tolerance to salinity, compared with the other lines, recording a salinity induced an increase in soluble sugars and soluble proteins, a slight decrease in malondialdehyde (MDA) accumulation, and less reduction in plant biomass. TN6.18 was the most susceptible to salinity as it showed less plant weight, had elevated levels of MDA, and lower levels of soluble sugars and soluble proteins under salt stress. As transcription factors of the APETALA2/ethylene responsive factor (AP2/ERF) family play important roles in plant growth, development, and responses to biotic and abiotic stresses, we performed a functional characterization of MtERF1 gene. Real-time PCR analysis revealed that MtERF1 is mainly expressed in roots and is inducible by NaCl and low temperature. Additionally, under salt stress, a greater increase in the expression of MtERF1 was found in TN1.11 plants than that in TN6.18. Therefore, the MtERF1 pattern of expression may provide a useful marker for discriminating among lines of M. truncatula and can be used as a tool in breeding programs aiming at obtaining Medicago lines with improved salt tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA