RESUMO
One of the most important reasons for an increased mortality rate of cancer is late diagnosis. Point-of-care (POC) diagnostic sensors can provide rapid and cost-effective diagnosis and monitoring of cancer biomarkers. Portable, disposable, and sensitive sarcosine solid-contact ion-selective potentiometric sensors (SC-ISEs) were fabricated as POC analyzers for the rapid determination of the prostate cancer biomarker sarcosine. Tungsten trioxide nanoparticles (WO3 NPs), polyaniline nanoparticles (PANI NPs), and PANI-WO3 nanocomposite were used as ion-to-electron transducers on screen-printed sensors. WO3 NPs and PANI-WO3 nanocomposite have not been investigated before as ion-to-electron transducer layers in potentiometric SC sensors. The designated sensors were characterized using SEM, XRD, FTIR, UV-VIS spectroscopy, and EIS. The inclusion of WO3 and PANI in SC sensors enhanced the transduction at the interface between the screen-printed SC and the ion-selective membrane, offering lower potential drift, a longer lifetime, shorter response time, and better sensitivity. The proposed sarcosine sensors exhibited Nernstian slopes over linear response ranges 10-3-10-7 M, 10-3-10-8 M, 10-5-10-9 M, and 10-7-10-12 M for control, WO3 NPs, PANI NPs, and PANI-WO3 nanocomposite-based sensors, respectively. From a comparative point of view between the four sensors, PANI-WO3 nanocomposite inclusion offered the lowest potential drift (0.5 mV h-1), the longest lifetime (4 months), and the best LOD (9.95 × 10-13 M). The proposed sensors were successfully applied to determine sarcosine as a potential prostate cancer biomarker in urine without prior sample treatment steps. The WHO ASSURED criteria for point-of-care diagnostics are met by the proposed sensors.
Assuntos
Nanocompostos , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais , Sarcosina , Próstata , Polímeros/química , Óxidos/química , Neoplasias da Próstata/diagnóstico , Testes Imediatos , Nanocompostos/químicaRESUMO
The major objective of this work was to develop a portable, disposable, cost-effective, and reliable POC solid-state electrochemical sensor based on potentiometric transduction to detect benzodiazepine abuse, mainly diazepam (DZP), in biological fluids. To achieve that, microfabricated Cu electrodes on a printed circuit board modified with the conducting polymer poly(3-octylthiophene) (POT) have been employed as a substrate. This polymer was introduced to enhance the stability of the potential drift (0.9 mV/h) and improve the limit of detection (0.126 nmol mL-1). Nernstian potentiometric response was achieved for DZP over the concentration range 1.0 × 10-2 to 5.0 × 10-7 mol L-1 with a slope of 55.0 ± 0.4 mV/decade and E0 ~ 478.9 ± 0.9. Intrinsic merits of the proposed sensor include rapid response time (11 ± 2 s) and long life time (3 months). In order to enhance the selectivity of the potentiometric sensor towards the target drug and minimize any false positive results, calix[4]arene (CX4) was impregnated as an ionophore within the PVC plastic ion-sensing membrane. The performance of the POC sensors was assessed using electrochemical methods of analysis and electrochemical impedance spectroscopy as a surface characterization tool. The studied sensors were applied to the potentiometric determination of DZP in different biological fluids (plasma, urine, saliva, and human milk) in the presence of its metabolite with an average recovery of 100.9 ± 1.3%, 99.4 ± 1.0%, 101.8 ± 1.2%, and 99.0 ± 2.0%, respectively. Graphical abstract.
Assuntos
Cobre/química , Diazepam/análise , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Diazepam/sangue , Diazepam/urina , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Contaminação de Alimentos/análise , Humanos , Limite de Detecção , Microtecnologia , Leite Humano/química , Testes Imediatos , Polímeros/química , Reprodutibilidade dos Testes , Saliva/química , Tiofenos/químicaRESUMO
Antibiotics are essential in treating infectious diseases in both humans and animals, and they are also utilized to enhance animal growth. However, their widespread use has led to significant environmental concerns. After administration of antibiotics, a substantial portion of them is excreted by animals, contaminating various environmental compartments. This problem is examined from the One Health perspective which seeks to balance human, animal, and environmental health for the benefit of global well-being. Enrofloxacin (ENR) is a commonly used antibiotic in veterinary medicine. Despite its efficacy in animal health, ENR is not approved for human use due to its associated toxicities. To address ENR detection, a sensor built upon a core-shell molecularly imprinted polymer (MIP) was created for the determination and testing of ENR in different matrices. Offering a miniaturized and reproducible tool for determining antibiotic residues in biological and environmental samples helps in revolutionizing the way we monitor and control antibiotic usage and contamination in various settings. The fabricated sensor demonstrated an optimum response time and functioned effectively across the pH range of 2.0 to 5.0. The potential profile displayed a linear correlation within a varying concentration spectrum of 1.0 × 10-5 M to 1.0 × 10-2 M characterized by a slope of 57.21 mV per decade. Furthermore, a comprehensive assessment of the environmental sustainability of the developed method was carried out using the Analytical Greenness calculator, AGREE algorithm. Lastly, an examination of the method's level of environmental friendliness was pursued using the newly developed RGB12 model to evaluate its "whiteness" level.
Assuntos
Antibacterianos , Enrofloxacina , Polímeros Molecularmente Impressos , Enrofloxacina/análise , Polímeros Molecularmente Impressos/química , Antibacterianos/análise , Animais , Saúde Única , Humanos , Impressão Molecular/métodos , Fluoroquinolonas/análiseRESUMO
In this study, a new green method was developed for the synthesis of bis(indolyl)methane derivatives using electrochemical bisarylation reaction in deep eutectic solvents as a green alternative to traditional solvents and electrolytes. The effects of varying time, current, type of solvent and material of electrodes were all studied. The optimum reaction conditions involved the use of ethylene glycol/choline chloride with a ratio of 2:1 at 80 °C for 45 min. Graphite and platinum were used as cathode and anode, respectively. The newly developed method offered many advantages such as using mild reaction conditions, short reaction time and affording high product yields with a wide range of substituted aromatic aldehydes bearing electron donating or electron withdrawing substituents. In addition, the electrochemical method proved to be more effective than heating in deep eutectic solvents and afforded higher yields of products in shorter reaction time. The mechanism of the electrochemical reaction was proposed and confirmed using the cyclic voltammetry study.
RESUMO
Two solid-contact electrochemical sensors were developed for detection of each of oxytetracycline HCl (OXY), and the co-formulated non-steroidal anti-inflammatory drug flunixin meglumine (FLU) in veterinary formulations and animal-derived food products. The designed sensors were based on a glassy carbon electrode as the substrate material and high molecular weight polyvinyl chloride (PVC) polymeric ion-sensing membranes doped with multiwalled carbon nanotubes (MWCNTs) to improve the potential stability and minimize signal drift. For determination of OXY, the sensing membrane was modified with potassium tetrakis (4-chlorophenyl) borate (K-TCPB), which was employed as a cation exchanger, and 2-hydroxypropyl-ß-cyclodextrin (HP-ßCD), which was used as an ionophore. A linear response within a concentration range of 1 × 10- 6-1 × 10- 2 M with a slope of 59.47 mV/decade over a pH range of 1-5 was recorded. For the first time, two potentiometric electrodes were developed for determination of FLU, where the sensing membrane was modified with tetra dodecyl ammonium chloride (TDDAC) as an anion exchanger. A linear response within a concentration range of 1 × 10- 5-1 × 10- 2 M and a slope of -58.21 mV/decade over a pH range of 6-11 was observed. The suggested sensors were utilized for the selective determination of each drug in pure powder form, in veterinary formulations, and in spiked milk samples, with mean recoveries ranging from 98.50 to 102.10, and without any observed interference. The results acquired by the proposed sensors were statistically analyzed and compared with those acquired by the official methods, and the results showed no significant difference.
RESUMO
One of the biggest issues affecting the entire world currently is water contamination caused by textile industries' incapacity to properly dispose their wastewater. The presence of toxic textile dyes in the aquatic environment has attracted significant research interest due to their high environmental stability and their negative effects on human health and ecosystems. Therefore, it is crucial to convert the hazardous dyes such as methyl orange (MO) azo dye into environmentally safe products. In this context, we describe the use of Copper Nitroprusside Chitosan (Cu/SNP/Cts) nanocomposite as a nanocatalyst for the chemical reduction of azodyes by sodium borohydride (NaBH4). The Cu/SNP/Cts was readily obtained by chemical coprecipitation in a stoichiometric manner. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy were applied to investigate chemical, phase, composition, and molecular interactions. Additionally, Scanning electron microscope (SEM) was used to examine the nanomaterial's microstructure. UV-vis spectroscopy was utilized for studying the Cu Nitroprusside Chitosan's catalytic activity for the reduction of azodye. The Cu/SNP/Cts nanocomposite demonstrated outstanding performance with total reduction time 160 s and pseudo-first order constant of 0.0188 s-1. Additionally, the stability and reusability study demonstrated exceptional reusability up to 5 cycles with minimal activity loss. The developed Cu/SNP/Cts nanocomposite act as efficient nanocatalysts for the reduction of harmful Methyl orange azodye.
RESUMO
Metal-organic frameworks (MOFs) with their exceptional properties have the potential to revolutionize the field of electrochemistry and pave the way for new and exciting applications. MOFs is an excellent choice as an active electrocatalyst component in the fabrication of electrochemical sensors. Here, bimetallic NiCo-MOFs, monometallic Ni-MOFs, and Co-MOFs were fabricated to modify the carbon paste electrode. Moreover, the ratio between Co and Ni within the bimetallic MOFs was optimized. Our aim in this work is to synthesize different compositions from bimetallic MOFs and systematically compare their catalytic activity with mono-metallic MOFs on paracetamol. The structure and properties of the 2D NiCo-MOFs were characterized by scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared, and electrochemical method. Bimetallic Ni0.75Co0.25-MOFs modified carbon paste sensor displayed the optimum sensing performance for the electrochemical detection of paracetamol. A linear response over the range 6.00 × 10- 7 to 1.00 × 10- 4 M with a detection limit of 2.10 × 10- 8 M was obtained. The proposed method was applied to detect paracetamol in spiked human plasma and to determine paracetamol in the presence of its major toxic impurity, p-aminophenol. These findings suggest the considerable potential use of the newly developed sensor as a point-of-care tool for detecting paracetamol and p-aminophenol in the future.
RESUMO
The release of toxic azo dyes pollutants in the environment from different industries represents a public health concern and a serious environmental problem. Therefore, the conversion of hazardous methyl orange (MO) azo dye to environmentally benign products is a critical demand. In this work, an eco-friendly Prussian blue analogue (PBA) was synthesized and its catalytic activity toward the reduction of MO was investigated. The PBA copper(ii) hexacyanocobaltate(III) (Cu3[Co(CN)6]2) was synthesized by a facile inexpensive chemical coprecipitation method without using hazardous solvents. The nanocatalyst was characterized using XPS, Raman, FTIR spectroscopy, and XRD. The chemical reduction of MO using NaBH4 and the PBA as nanocatalyst was monitored by UV-VIS spectroscopy. Toxic MO was completely reduced in 105 s with a rate constant (k) 0.0386 s-1 using only 10 µg of the PBA nanocatalyst. Besides the powerful catalytic activity, the nanocatalyst also showed excellent stability and recyclability for ten consecutive cycles, with no significant decrease in the catalytic performance. Therefore, the proposed PBA is a promising, stable, cost-effective, and eco-friendly nanocatalyst for the rapid elimination of hazardous azo dyes.
RESUMO
In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-ß-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.
RESUMO
Apomorphine is a dopamine agonist that is used for the management of Parkinson's disease and has been proven to effectively decrease the off-time duration, where the symptoms recur, in Parkinson's disease patients. This paper describes the design and fabrication of the first potentiometric sensor for the determination of apomorphine in bulk and human plasma samples. The fabrication protocol involves stereolithographic 3D printing, which is a unique tool for the rapid fabrication of low-cost sensors. The solid-contact apomorphine ion-selective electrode combines a carbon-mesh/thermoplastic composite as the ion-to-electron transducer and a 3D printed ion-selective membrane, doped with the ionophore calix[6]arene. The sensor selectively measures apomorphine in the presence of other biologically present cations - sodium, potassium, magnesium, and calcium - as well as the commonly prescribed Parkinson's pharmaceutical, levodopa (L-Dopa). The sensor demonstrated a linear, Nernstian response, with a slope of 58.8 mV/decade over the range of 5.0 mM-9.8 µM, which covers the biologically (and pharmaceutically) relevant ranges, with a limit of detection of 2.51 µM. Moreover, the apomorphine sensor exhibited good stability (minimal drift of just 188 µV/hour over 10 h) and a shelf-life of almost 4 weeks. Experiments performed in the presence of albumin, the main plasma protein to which apomorphine binds, demonstrate that the sensor responds selectively to free-apomorphine (i.e., not bound or complexed forms). The utility of the sensor was confirmed through the successful determination of apomorphine in spiked human plasma samples.
Assuntos
Técnicas Biossensoriais , Doença de Parkinson , Humanos , Apomorfina , Doença de Parkinson/tratamento farmacológico , Eletrodos Seletivos de Íons , Preparações Farmacêuticas , PotenciometriaRESUMO
Herein, we synthesized biogenic carbon dots (CDs) with blue-shifted maximum excitation (λex/λem of 320/404 nm) from largely wasted tangerine seeds for the first time via a one-step hydrothermal method. The biogenic CDs exhibit a maximum excitation wavelength that overlaps with the absorption spectrum of ketorolac tromethamine (KETO) at 320 nm. The developed CDs serve as a turn-off fluorescent probe via an inner filter effect (IFE) quenching mechanism. The resulting CDs have high quantum yield (QY) (39% ± 2.89%, n = 5) and exhibited great performance toward KETO over a concentration range of 0.50-16.00 µg/mL with a limit of detection (LOD) = 0.17 µg/mL. The nanoprobe achieved a high % recovery in assaying KETO in tablet dosage form and had not been significantly affected by various interferents including co-formulated and co-administered drugs. The nanoprobe shows selectivity toward KETO, even in the presence of its photocatalytic degradation products. It can effectively investigate the elimination of KETO from aquatic systems and test its stability in pharmaceutical preparations. The developed nanoprobe underwent a comprehensive evaluation of its environmental impact using analytical eco-scale (AES), complex green analytical procedure index (Complex GAPI), and the Analytical GREEnness calculator (AGREE). The sustainability of the developed nano sensor was assessed and compared to the reported metal-based quantum dots probe for KETO using the innovative RGB 12 model, considering 12 white analytical chemistry (WAC) perspectives.
RESUMO
INTRODUCTION: Clomipramine is a tricyclic antidepressant acting as a serotonin reuptake inhibitor. Its maximum plasma concentration (Cmax) is 13-310 ng/mL, the therapeutic range is 220-500 ng/mL and its toxic effect appears in doses above 900 ng/mL. OBJECTIVES: The fabrication of eco-friendly solid-contact ion-selective electrodes to evaluate the concentration of Clomipramine in different matrices based on disposable screen-printed carbon electrode. METHODS: Disposable screen-printed carbon electrode was utilized as a substrate to fabricate the proposed sensors. The sensors were optimized to determine Clomipramine using calix[4]arene as an ionophore into PVC polymeric membrane to enhance selectivity towards the target analyte. The solid-contact sensor potential stability was improved by the incorporation of graphene nanoparticles transducer layer. RESULTS: The sensors were assessed as per the IUPAC recommendations. The linearity range was 1 × 10- 2 to 1 × 10- 5.3 M. The sensors were successfully applied to determine CLM in the pharmaceutical formulation. Furthermore, the ion selective electrodes were applied for Clompiramine assay in spiked plasma for the purpose of Point-of-Care testing to be a diagnostic tool for therapeutic monitoring of the cited central nervous system agent. The findings were statistically compared to the reported method showing no statistically significant difference. CONCLUSION: This work was concerned with developing a green analytical method for the determination of Clomipramine. The proposed SC-ISE was mixed with graphene nanocomposite transducer interlayer. The graphene layer succeeded in preventing the formation of an aqueous layer so resulted in a stable, reproducible standard potential besides the rapid response time.
RESUMO
Environmental appearance of antimicrobials due to frequent use of personal care products as recommended by WHO can cause serious flare-up of antimicrobial resistance. In this work, three eco-friendly microfabricated copper solid-state sensors were developed for measuring triclosan in water. Multi-walled carbon nanotubes were incorporated in sensor 2 and 3 as hydrophobic conductive inner layer. Meanwhile, ß-cyclodextrin was incorporated in sensor 3 as an ionophore for selective binding of TCS in presence of interfering compounds. The obtained linear responses of sensors 1, 2 and 3 were (1 × 10- 8-1 × 10- 3 M), (1 × 10- 9-1 × 10- 3 M) and (1 × 10- 10- 1 × 10- 3 M), respectively. Limit of detection was 9.87 × 10- 9 M, 9.62 × 10- 10 M, and 9.94 × 10- 11 M, respectively. The miniaturized sensors were utilized for monitoring of triclosan in water samples.
RESUMO
BACKGROUND: Dapagliflozin is a sodium glucose cotransporter-II inhibitor while saxagliptin is a dipeptidyl peptidase-4 inhibitor. Both are used to manage type 2 diabetes mellitus. OBJECTIVE: The aim of this work is to develop four simple, accurate, and precise UV-spectrophotometric methods, three univariate and one multivariate, for the estimation of dapagliflozin and saxagliptin in their pure and marketed dosage forms. METHODS: Method (A) is based on the ratio difference method; Method (B) is ratio subtraction with constant multiplication; while Method (C) is a second derivative method and Method (D) is a partial least-squares method. RESULTS: The calibration curves for dapagliflozin and saxagliptin were linear within the concentration range of 2.50-50.0 µg/mL and 5.0-60.0 µg/mL, respectively. The specificity of the proposed methods was studied by analyzing different laboratory-prepared mixtures and their combined pharmaceutical dosage form. According to the International Council for Harmonisation guidelines, the three proposed methods were validated regarding the accuracy, precision, and specificity. Method (D), partial least-squares, was employed for the determination of the same mixture over a wavelength range of 205-300 nm. A statistical comparison was performed between the results of the proposed methods and those of a reported spectrophotometric method and no statistically significant difference was detected at 95% confidence limit regarding both precision and accuracy. CONCLUSION: Four accurate, specific, and precise UV-spectrophotometric methods for dapagliflozin and saxagliptin testing and estimation were successfully utilized and validated. HIGHLIGHTS: The examined methods are simple and do not involve sophisticated and expensive instruments. They could be effectively employed in quality control laboratories for routine examination of the investigated drugs in their pure powdered or combined pharmaceutical formulations.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes , Espectrofotometria/métodos , PósRESUMO
Misuse of illicit drugs is a serious problem that became the primary concern for many authorities worldwide. Point-of-care (POC) diagnostic tools can provide accurate and fast screening information that helps to detect illicit drugs in a short time. A portable, disposable and reproducible core-shell molecularly imprinted polymer (MIP) screen-printed sensor was synthesized as a POC analyzer for the assay of the date rape drug "ketamine hydrochloride" in different matrices. Firstly, the screen-printed electrode substrate was modified electrochemically with polyaniline (PANI) as an ion-to-electron transducer interlayer to improve the potential signal stability. Secondly, core-shell MIP was prepared, the core consisting of silica nanoparticles prepared by Stober's method, while the MIP shell was synthesized onto silica nanoparticles surface by copolymerizing methacrylic acid functional monomer and the crossing agent; ethylene glycol dimethacrylate in the presence of ketamine as a template molecule. Finally, the core-shell MIP was incorporated into the PVC membrane as an ionophore and drop-casted over PANI modified screen-printed carbon electrode. The imprinting process and the morphology of MIP were examined using scanning electron microscopy, Fourier-transform infrared and X-ray photoelectron spectroscopic methods. The sensor exhibited a short response time within 3-5 s in a pH range (2.0-5.0). The potential profile indicated a linear relationship in a dynamic concentration range of 1.0 × 10-6 M to 1.0 × 10-2 M with a slope of 54.7 mV/decade. The sensor was employed to determine ketamine in biological matrices and beverages.
Assuntos
Ketamina , Impressão Molecular , Estupro , Polímeros Molecularmente Impressos , Polímeros/química , Técnicas Eletroquímicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Dióxido de Silício/química , Impressão Molecular/métodos , Eletrodos , Limite de DetecçãoRESUMO
Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.
RESUMO
This work is dedicated to the greenness estimation of three proposed spectrophotometric techniques [e.g., ratio difference (RD), mean centering of ratio spectra (MCR) and continuous wavelet transform of ratio spectra (CWT)] for the determination of a binary combination named Ofloxacin (OFL) and Ornidazole (ORN). Applying the green analytical chemistry methods to assess the proposed methods has widely attained the analytical community care. The greenness assessment was performed via three evaluation approaches; the "Analytical Eco-Scale", the "National Environmental Method Index" (NEMI) and "Green Analytical Procedure Index" (GAPI). Following the examination of the zero spectrum of OFL and ORN, it is observed that OFL and ORN spectra are overlapped, so they can be detected by the methods mentioned previously. The ratio difference method was carried out at wavelengths of 294.6 nm and 265.6 nm for OFL, 292 nm and 315 nm for ORN. The linear range was (2-15 µg/mL) for OFL and (3-30 µg/mL) for ORN. The MCR method based on the use of mean centered ratio spectra in dual steps and calculating the second ratio spectra mean centered values at 294.6 nm for OFL and 315 nm for ORN. The continuous wavelet transformation which carried out using MATLAB at wavelengths of 265 nm for OFL and 306 for ORN. These techniques were intended for the binary mixture analysis in bulk powder and pharmaceutical formulations with high recoveries. The developed methods were validated according to ICH guidelines. All techniques were statistically compared to either an official method for OFL or a reported method for ORN and the results indicate that there were not any significant differences.
RESUMO
The objective of this study is to fabricate solid-contact ion selective electrodes (SC-ISEs) that have long term stable potential. Various conducting polymers such as polyaniline and its derivatives have been successfully employed to improve the potential stability in SC-ISEs. Recently, the role of hydrophobicity at the interface between the conducting polymer solid contact and the ion sensing membrane has been investigated and figured out that the hydrophobic interfaces preclude water layer formation that deteriorate the SC-ISEs potential stability and reproducibility. In this work, a hydrophobic polyaniline derivative was fabricated on the surface of a glassy carbon electrode by electropolymerization of perfluorinated aniline monomers in acidic solution. The electropolymerized hydrophobic polymer was characterized by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The fabricated electrode was employed for determination of midazolam-a model drug-in pharmaceutical formulation without prior extraction. The SC-ISEs performance was optimized, and the potential drift was compared to control SC-ISEs, the SC-ISE linear range was 1 × 10-6-1 × 10-2 M, LOD was estimated to be 9.0 × 10-7 M, and potential drift was reduced to 100 µV/h.
RESUMO
The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional groups. In this research, methyldopa was exploited to fabricate selective MIPs, for the detection of sofosbuvir (SFB), by a simple electropolymerization step onto a disposable pencil graphite electrode (PGE) substrate. The interaction between methyldopa, as a functional monomer, and a template has been investigated experimentally by UV spectroscopy. A polymethyldopa (PMD) polymer was electrografted onto PGE in the presence of SFB as a template. X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (ESI), and cyclic voltammetry (CV) were used for the characterization of the fabricated sensor. Differential pulse voltammetry (DPV) of a ferrocyanide/ferricyanide redox probe was employed to indirectly detect the SFB binding to the MIP cavities. The sensor shows a reproducible and linear response over a dynamic linear range from 1.0 × 10-11 M to 1.0 × 10-13 M of SFB with a limit of detection of 3.1 × 10-14 M. The sensor showed high selectivity for the target drug over structurally similar and co-administered interfering drugs, and this enabled its application to detect SFB in its pharmaceutical dosage form and in spiked human plasma samples.
RESUMO
Nitroanilines are environmentally toxic pollutants which are released into aquatic systems due to uncontrolled industrialization. Therefore, it is crucial to convert these hazardous nitroanilines into a harmless or beneficial counterpart. In this context, we present the chemical reduction of 4-nitroaniline (4-NA) by NaBH4 utilizing Prussian blue analogue (PBA) as nanocatalyst. PBAs can serve as inexpensive, eco-friendly, and easily fabricated nanocatalysts. PBA cobalt tetracyanonickelate hexacyanochromate (CoTCNi/HCCr) was stoichiometrically prepared by a facile chemical coprecipitation. Chemical, phase, composition, and molecular interactions were investigated by XRD, EDX, XPS, and Raman spectroscopy. Additionally, SEM and TEM micrographs were utilized to visualize the microstructure of the nanomaterial. The findings revealed the synthesized PBA of the cubic phase and their particles in nanosheets. The band gap was estimated from the optical absorption within the UV-vis region to be 3.70 and 4.05 eV. The catalytic performance of PBA for the reduction of 4-NA was monitored by UV-vis spectroscopy. The total reduction time of 4-NA by PBA was achieved within 270 s, and the computed rate constant (k) was 0.0103 s-1. The synthesized PBA nanoparticles have the potential to be used as efficient nanocatalysts for the reduction of different hazardous nitroaromatics.