Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Res ; 236(Pt 2): 116773, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543125

RESUMO

The presence of pharmaceutical compounds in the environment poses a significant threat to human and aquatic animal health. Dexamethasone (DEX), a synthetic steroid hormone with endocrine-disrupting effects, is one such compound that needs to be effectively removed before discharging into the environment. This research presents a novel approach utilizing magnetically recyclable Fe3O4@NH2-MIL88B NRs as an efficient adsorbent for the treatment of DEX from aqueous solutions. The synthesized adsorbent was characterized by X-ray diffraction (XRD), scanning microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), diffuse reflectance spectra (DRS), and Fourier transform infrared spectroscopy (FTIR). Response surface methodology based on central composite design (RSM-CCD) was employed to optimize DEX removal efficiency by determining the optimal conditions, including pH, adsorbent dose, time, and DEX concentration. Under the optimized conditions (pH: 5.53, adsorbent dose: 0.185 g/L, time: 16.068 min, and DEX concentration: 33.491 mg/L), Fe3O4@NH2-MIL88B NRs revealed remarkable DEX adsorption efficiency of 91 ± 1.34% and adsorption capacity of 180.01 mg/g. The Langmuir isotherm and pseudo-second-order kinetic model were found to fit well with the experimental data, indicating a monolayer and chemical adsorption process. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic. The study also investigated the inhibitory effect of background ions on DEX removal by Fe3O4@NH2-MIL88B NRs. Magnesium exhibited superior competitive ability with dexamethasone to occupy the active sites of the adsorbent compared to other background ions. The reuse of the adsorbent over ten consecutive cycles resulted in a 39.46% decrease in removal efficiency. The Fe3O4@NH2-MIL88B NRs are surrounded by abundant amounts of functional groups and π-electrons bands that can play a key role in the adsorption and separation of DEX from aqueous environments. The promising results obtained under real conditions highlight the potential of Fe3O4@NH2-MIL88B NRs as a practical and efficient adsorbent for the removal of DEX and other similar corticosteroids from aqueous solutions.

2.
Environ Monit Assess ; 195(12): 1443, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945976

RESUMO

Antibiotics are one of the most widely used drug groups. The presence of antibiotics in urban water sources and sewage creates many environmental and medical risks for humans and other living organisms. In this study, the potential of zinc oxide (ZnO) coated on almond shell activated carbon (ACA-ZnO) in removing ciprofloxacin (CIP) from aqueous solutions was investigated. Almond shell was used to make activated carbon. Zinc oxide nanoparticles were prepared by the sol-gel method, and finally, ZnO nanoparticles were bonded to activated carbon. The effect of independent parameters pH, contact time, adsorbent dose, and initial CIP concentration on CIP removal efficiency using ACA-ZnO was investigated by response surface methodology. Optimal removal was obtained at pH = 5.4, CIP initial concentration = 7.4 mg/L, adsorbent dose = 0.82 g/L, and reaction time = 67.3 min. This study followed a quadratic model (R2 = 0.958). The best model of adsorption isotherm fits with the Freundlich model (R2 = 0.9972) and the maximum capacity was 251.42 mg/g adsorption kinetics, and pseudo-second-order kinetic model (R2 = 0.959). The results of this study showed that ACA-ZnO as an adsorbent is very efficient, without environmental side effect and cost-benefit.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Humanos , Antibacterianos/química , Ciprofloxacina/química , Óxido de Zinco/química , Carvão Vegetal , Monitoramento Ambiental , Água/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
3.
Int J Biometeorol ; 66(9): 1891-1902, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35852660

RESUMO

Air pollution is considered the most prominent public health. Economically, air pollution imposes additional costs on governments. This study aimed to quantify health effects and associated economic values of reducing PM2.5 air pollution using BenMAP-CE in Qom in 2019. The air quality data were acquired from Qom Province Environmental Protection Agency, and the population data were collected from Qom Province Management and Planning Organization website. The number of deaths due to Stroke, Chronic Obstructive Pulmonary Disease, Lung Cancer, and Ischemic Heart Disease attributable to PM2.5 were estimated using BenMAP-CE based on two control scenarios, 2.4 and 10 µg/m3, known as scenarios I and II, respectively. The associated economic effect of premature deaths was assessed by value of a statistical life (VSL) approach. The annual average of PM2.5 concentration was found to be 16.32 µg/m3 (SD: 9.93). A total of 4694.5 and 2475.94 premature deaths in scenarios I and II were found to be attributable to PM2.5 in overall, respectively. The total associated cost was calculated to be 855.91 and 451.40 million USD in scenarios I and II, respectively. The total years of life lost due to PM2.5 exposure in 2019 was 158,657.06 and 78,351.51 in scenarios I and II, respectively. The results of both health and economic assessment indicate the importance of solving the air pollution problem in Qom, as well as other big cities in Iran. The elimination of limitations, such as insufficient local data, should be regarded in future studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Exposição Ambiental , Avaliação do Impacto na Saúde , Material Particulado
4.
J Microencapsul ; 38(3): 192-202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33530812

RESUMO

AIM: Nano drug delivery systems can provide the opportunity to reduce side effects and improve the therapeutic aspect of a variety of drugs. Bortezomib (BTZ) is a proteasome inhibitor approved for the treatment of multiple myeloma and mantle cell lymphoma. Severe side effects of BTZ are the major dose-limiting factor. Particulate drug delivery systems for BTZ are polymeric and lipidic drug delivery systems. This review focussed on lipidic-nano drug delivery systems (LNDDSs) for the delivery of BTZ. RESULTS: LNDDSs including liposomes, solid lipid nanoparticles, and self-nanoemulsifying drug delivery systems showed reduce systemic side effects, improved therapeutic efficacy, and increased intestinal absorption. Besides LNDDSs were used to target-delivery of BTZ to cancer. CONCLUSION: Overall, LNDDSs can be considered as a novel delivery system for BTZ to resolve the treatment-associated restrictions.


Assuntos
Bortezomib/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas , Inibidores de Proteassoma/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Bortezomib/farmacocinética , Bortezomib/uso terapêutico , Composição de Medicamentos , Emulsões , Humanos , Lipossomos , Tamanho da Partícula , Inibidores de Proteassoma/farmacocinética , Inibidores de Proteassoma/uso terapêutico , Ratos
5.
Drug Dev Ind Pharm ; 46(4): 521-530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32116040

RESUMO

The low cellular uptake of Methotrexate (MTX), a commonly used anticancer drug, is a big challenge for efficient cancer therapy. Self-assembled peptide nanoparticles (SAPNs) are one of the major classes of peptide vectors that have gained much attention toward novel drug delivery systems. In the present study, different sequences of cell-penetrating peptides including R2W4R2 and W3R4W3 and their SAPNs (R2W4R2-E12 and W3R4W3-E12) were designed for efficient delivery of MTX into MCF7 breast cancer cells. Based on electron microscopy results, the obtained SAPNs were in nano scale with spherical shape. There was a positive relationship between the free energy of water to octanol transferring and cellular penetration of designed nanostructures. The R2W4R2 possessed proper free energy and ability to form a spherical structure and hydrophobic-hydrophobic interactions, therefore, exhibited more cellular penetration than W3R4W3. The cellular uptake of obtained nanoparticles was examined by flow cytometry and fluorescence microscopy, in which, R2W4R2 and R2W4R2-E12 showed more appropriate penetration into MCF7 cells than W3R4W3 and W3R4W3-E12. The cytotoxicity of MTX-loaded peptides and SAPNs was examined by MTT assay. As a result, at higher concentrations, the R2W4R2 and R2W4R2-E12 showed higher cytotoxic behavior than their counterparts. Despite their enhanced cellular internalization, the cytotoxic behavior of MTX-loaded SAPNs at lower concentrations was relatively less than free MTX, which could be ascribed to the gradual nature of drug detachment from these conjugates. Therefore, R2W4R2 could be considered as an efficient choice to enhance the therapeutic efficiency of MTX in cancer treatments.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/farmacologia , Metotrexato/administração & dosagem , Neoplasias/tratamento farmacológico , Antineoplásicos/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Metotrexato/toxicidade , Nanopartículas/química , Neoplasias/patologia , Testes de Toxicidade Aguda
6.
Pharm Dev Technol ; 25(3): 351-358, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31810410

RESUMO

Purpose: Intestinal drug absorption is one of the main factors that govern the fraction of oral dose absorbed (Fa) of drugs. It is reported that oral absorption of bortezomib (BTZ) can be restricted by its low intestinal permeability. In this study, we aimed to evaluate the impact of self-nanoemulsifying drug delivery systems (SNEDDS) on the intestinal absorption and Fa of BTZ.Methods: Intestinal permeability studies were conducted using in situ single-pass intestinal perfusion (SPIP) technique in rats. Human intestinal absorption (Peff (Human)) and Fa values of BTZ and BTZ-SNEDDS were predicted based on SPIP data.Results: Based on the obtained data, Peff (rat) values of (3.36 ± 0.5) × 10-5 and (8.9 ± 3) × 10-5 cm/s (mean ± SEM) were calculated for BTZ and BTZ-SNEDDS, respectively. Meanwhile, Peff (human) values of (7 × 10-5) and (68 × 10-5) cm/sec were predicted for BTZ and BTZ-SNEDDS, respectively. Besides, Fa (human) values of 72.5 and 97% were estimated for BTZ and BTZ-SNEDDS, respectively.Conclusions: According to the obtained data, it is concluded that SNEDDS can be considered as a promising drug delivery system to improve the intestinal absorption and Fa values of BTZ.


Assuntos
Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Oral , Animais , Antineoplásicos/farmacocinética , Bortezomib/farmacocinética , Emulsões , Humanos , Absorção Intestinal , Masculino , Permeabilidade , Ratos , Ratos Wistar , Especificidade da Espécie
7.
Anal Bioanal Chem ; 411(2): 517-526, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30498983

RESUMO

We report a green synthesis of oatmeal ZnO/silver composites in the presence of L-glutamine as an electrochemical sensor for Pb2+ detection. The synthesis was performed via the direct reduction of Ag+ in the presence of L-glutamine in NaOH. X-ray diffraction indicated that the Ag+ was completely reduced to metallic Ag. The field emission scanning electron microscopy (FESEM) and energy dispersive X-ray results confirmed an oatmeal-like morphology of the ZnO with the presence of Ag. The FESEM images showed the effect of L-glutamine on the ZnO morphology. The EIS results confirmed a significant decrease in the charge transfer resistance of the modified glassy carbon electrode due to the presence of Ag. From the differential pulse voltammetry results, a linear working range for the concentration of Pb2+ between 5 and 6 nM with LOD of 0.078 nM (S/N = 3) was obtained. The sensitivity of the linear segment is 1.42 µA nM-1 cm-2. The presence of L-glutamine as the capping agent and stabilizer decreases the size of Ag nanoparticles and prevents the agglomeration of ZnO, respectively. Graphical abstract ᅟ.


Assuntos
Avena/química , Técnicas Eletroquímicas/instrumentação , Glutamina/química , Chumbo/química , Prata , Poluentes da Água , Óxido de Zinco
8.
Mikrochim Acta ; 186(6): 369, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31119482

RESUMO

The study presents the synthesis of polypyrrole-coated palladium platinum/nitrogen-doped reduced graphene oxide nanocomposites (PdPt-PPy/N-rGO NC) via direct the reduction of Pd(II) and Pt(II) in the presence of pyrrole monomer, N-rGO and L-cysteine as the reducing agent. X-ray diffraction confirmed the presence of metallic Pd and Pt from the reduction of Pd and Pt cations. Transmission electron microscopy images revealed the presence of Pd, Pt and PPy deposition on N-rGO. Impedance spectroscopy results gave a decreased charge transfer resistance due to the presence of N-rGO. The nanocomposites were synthesized with different Pd/Pt ratios (2:1, 1:1 and 1:2). A glassy carbon electrode (GCE) modified with the nanocomposite showed enhanced electrochemical sensing capability for formaldehyde in 0.1 M sulfuric acid solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GCE modified with Pd2Pt1 PPy N-rGO. At a typical potential of 0.45 V (vs. SCE), the sensitivity in the linear segment was 345.8 µA.mM -1. cm-2. The voltammetric response was linear between 0.01 and 0.9 mM formaldehyde concentration range, with a 27 µM detection limit (at S/N = 3). Graphical abstract Schematic presentation of formaldehyde detection by Pd2Pt1-PPy/nitrogen-doped reduced Graphene Oxide Nanocomposite (Pd2Pt1-PPy /N-Gr NC). The decrease of charge transfer resistance and the agglomeration of deposited metals in the presence of N-rGO enhance the current response of the electrochemical sensor.

9.
Drug Dev Ind Pharm ; 44(10): 1598-1605, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29874944

RESUMO

Bortezomib (BTZ), a proteasome inhibitor, is clinically used for the treatment of multiple myeloma and mantle cell lymphoma via intravenous or subcutaneous administration. Since BTZ has limited intestinal permeability, in this study, solid lipid nanoparticles (SLNs) were selected as lipid carrier to improve the intestinal permeability of BTZ. The nanoparticles were prepared by hot oil-in-water emulsification method and characterized for physicochemical properties. Moreover, in situ single-pass intestinal perfusion technique was used for intestinal permeability studies. Mean particle size of the BTZ-loaded solid lipid nanoparticles (BTZ-SLNs) was 94.6 ± 0.66 nm with a negative surface charge of -18 ± 11 mV. The entrapment efficiency of the BTZ-SLNs was 68.3 ± 3.7% with a drug loading value of 0.8 ± 0.05%. Cumulative drug release (%) over 48 h, indicated a slow release pattern for nanoparticles. Moreover, the SEM image showed a spherical shape and uniform size distribution for nanoparticles. Also, FTIR analysis indicated that BTZ was successfully loaded in the SLNs. The results of the intestinal perfusion studies revealed an improved effective permeability for BTZ-SLNs with a Peff value of about threefold higher than plain BTZ solution.


Assuntos
Bortezomib/síntese química , Bortezomib/metabolismo , Química Farmacêutica/métodos , Absorção Intestinal/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Bortezomib/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Absorção Intestinal/fisiologia , Lipídeos , Masculino , Nanopartículas/administração & dosagem , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar
10.
Int J Pharm ; 649: 123635, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000649

RESUMO

Asialoglycoprotein receptors (ASGPRs) are highly expressed on hepatocytes and have been used for liver-targeted delivery and hepatocellular carcinoma (HCC) therapy. However, targeted delivery of bortezomib (BTZ) to HCC has not been reported. In this study, N-stearyl lactobionamide (N-SALB) with galactose (Gal) moiety was synthesized as a targeting agent and its structure was confirmed by FT-IR and NMR analyses. N-SALB surface-modified solid lipid nanoparticles (SLNs) loaded with BTZ (Gal-SLNs/BTZ) were developed to target BTZ delivery into HCC cancer cells. The Gal-SLNs/BTZ had an average particle size of 116.3 nm, polydispersity index (PDI) of 0.210, and zeta potential of -13.8 mV. TEM analysis showed their nanometer-sized spherical morphology. The encapsulation efficiency (EE) and drug loading (DL) capacity were 84.5 % and 1.16 %, respectively. Release studies showed that BTZ loaded inside the SLNs was slowly released over a period of 72 h at pH 7.4. Flow cytometry analysis showed significantly higher intracellular uptake of N-SALB-targeted nanoparticles than non-targeted nanoparticles in HepG2 cells. All lipid formulations showed good biocompatibility in the cytotoxicity study using MTT assay. Concentration-dependent cytotoxicity was observed for all formulations, with N-SALB-targeted nanoparticles demonstrating more cytotoxicity against HepG2 cells. The highest percentage of apoptosis was obtained for N-SALB-targeted nanoparticles compared to non-targeted nanoparticles (42.2 % and 8.70 %, respectively). Finally, biodistribution studies in HepG2 bearing nude mice showed that the accumulation of targeted nanoparticles in the tumor was significantly higher than non-targeted nanoparticles.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Bortezomib , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Camundongos Nus , Distribuição Tecidual , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/uso terapêutico
11.
Expert Opin Drug Deliv ; 20(11): 1609-1621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058168

RESUMO

INTRODUCTION: Prostate cancer (PCa) is one of the most prevalent cancers in the world, and the fifth cause of death from cancer in men. Among the non-surgical treatments for PCa, gene therapy strategies are in the early stages of development and recent clinical trials have provided new insights suggesting promising future. AREAS COVERED: Recently, the creation of targeted gene delivery systems, based on specific PCa cell surface markers, has been viewed as a viable therapeutic approach. Prostate-specific membrane antigen (PSMA) is vastly expressed in nearly all prostate malignancies, and the intensity of expression increases with tumor aggressiveness, androgen independence, and metastasis. RNA aptamers are short and single-stranded oligonucleotides, which selectively bind to a specific ligand on the surface of the cells, which makes them fascinating small molecules for target delivery of therapeutics. PSMA-selective RNA aptamers represent great potential for developing targeted-gene delivery tools for PCa. EXPERT OPINION: This review provides a thorough horizon for the researchers interested in developing targeted gene delivery systems for PCa via PSMA RNA aptamers. In addition, we provided general information about different prospects of RNA aptamers including discovery approaches, stability, safety, and pharmacokinetics.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Próstata , Masculino , Humanos , Aptâmeros de Nucleotídeos/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/tratamento farmacológico , Terapia Genética
12.
Cancers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509409

RESUMO

mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy.

13.
Colloids Surf B Biointerfaces ; 222: 113101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529037

RESUMO

Many nutraceuticals present problems due to their poor water solubility or stability, which prevents the final bioactivity achievement. For that reason, the oral administration of KYNA complexed with HPß-CD and ßNS-CDI nanosponges was evaluated in mice. The solvent-free technology was used to prepare the complexes in a complete comparison between kneading in ball milling and classical inclusion complex preparation. The solvent-free ones showed higher strength and efficiency with ball milling, considerably reducing time. A 50 mg KYNA/kg/day dosage was orally administered in formulations showing a higher bioavailability when the nutraceutical was complexed with ßNS-CDI compared to HPß-CD and free KYNA, respectively. Several antioxidant statuses demonstrated a higher global antioxidant level perfectly related to bioavailability. Finally, the formulation of KYNA reduced the temporal oxidative stress damage in the kidney and liver, making ßNS-CDI the best formulation. These results suggest an important future application of cyclodextrin-based nanosponges for the oral delivery of nutraceuticals and their stabilization.


Assuntos
Ciclodextrinas , Camundongos , Animais , Ácido Cinurênico , Solventes , Disponibilidade Biológica , Antioxidantes/farmacologia , Solubilidade
14.
Curr Pharm Des ; 28(24): 1985-2000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676838

RESUMO

The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society. Researchers are still struggling to find effective drugs to treat neurological disorders and drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between peripheral blood circulation and neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration. BBB disruption is evident in many neurological conditions. Nevertheless, the majority of currently available therapies have tremendous problems with drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm which can encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD, as well as the factors affecting their efficacy after systemic administration.


Assuntos
Doença de Alzheimer , Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Acidente Vascular Cerebral , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico
15.
Polymers (Basel) ; 14(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35160583

RESUMO

The great variability of cancer types demands novel drugs with broad spectrum, this is the case of Nisin, a polycyclic antibacterial peptide that recently has been considered for prevention of cancer cells growth. As an accepted food additive, this drug would be very useful for intestinal cancers, but the peptide nature would make easier its degradation by digestion procedures. For that reason, the aim of present study to investigate the protective effect of two different ß-cyclodextrin-based nanosponges (carbonyl diimidazole and pyromellitic dianhydride) and their anti-cancer enhancement effect of Nisin-Z encapsulated with against colon cancer cells (HT-29). To extend its possible use, a comparison with breast (MCF-7) cancer cell was carried out. The physicochemical properties, loading efficiency, and release kinetics of Nisin complex with nanosponges were studied. Then, tricin-SDS-PAGE electrophoresis was used to understand the effect of NSs on stability of Nisin-Z in the presence of gastric peptidase pepsin. In addition, the cytotoxicity and cell membrane damage of Nisin Z were evaluated by using the MTT and LDH assay, which was complemented via Annexin-V/ Propidium Iodide (PI) by using flowcytometry. CD-NS are able to complex Nisin-Z with an encapsulation efficiency around 90%. A protective effect of Nisin-Z complexed with CD-NSs was observed in presence of pepsin. An increase in the percentage of apoptotic cells was observed when the cancer cells were exposed to Nisin Z complexed with nanosponges. Interestingly, Nisin Z free and loaded on PMDA/CDI-NSs is more selectively toxic towards HT-29 cells than MCF-7 cancer cells. These results indicated that nanosponges might be good candidates to protect peptides and deliver drugs against intestinal cancers.

16.
J Environ Health Sci Eng ; 20(2): 617-628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36406610

RESUMO

Purpose: Bisphenol A (BPA), as endocrine-disrupting compound (EDC), is extensively used as an important chemical in the synthesis of polycarbonate polymers and epoxy resins. BPA absorption into the body can result in the development of metabolic disorders such as low sex-specific neurodevelopment, immune toxicity, neurotoxicity and interference of cellular pathway. Therefore, the presence of BPA in the body and the environment can create hazards that must reach standards before being discharged into the environment. Methods: In this study, bismuth ferric nanomagnetic (BFO NMPs) were successfully synthesized via sol-gel method and developed as photocatalysts for BPA removal under visible light irradiation. FE-SEM, TEM, PL, XRD, UV-Vis DRS, VSM, EDX, and FTIR were used to characterize the BFO NMPs. Results: RSM model (R2 = 0.9745) showed a good correlation between experimental and predicted removal efficiency of BPA. The investigation of four independent variables indicated that pH had the most significant positive effect on the degradation of BPA. Under optimal conditions (pH = 4.042, catalyst dose = 7.617 mg, contact time = 122.742 min and BPA concentration = 15.065 mg/L), maximum degradation was calculated to be 98.7%. After five recycles, the removal of BPA remained >82%, which indicated the proper ability to reuse the catalyst. Conclusion: In conclusion, it can be stated like BPA, the prepared BFO NMPs is a promising photocatalyst for practical application in organic pollutant decomposition.

17.
Pharmaceutics ; 14(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336058

RESUMO

At present, antibiotic resistance is considered a real problem. Therefore, for decades scientists have been looking for novel strategies to treat bacterial infections. Nisin Z, an antimicrobial peptide (AMP), can be considered an option, but its usage is mainly limited by the poor stability and short duration of its antimicrobial activity. In this context, cyclodextrin (CD)-based nanosponges (NSs), synthesized using carbonyldiimidazole (CDI) and pyromellitic dianhydride (PMDA), were chosen for nisin Z loading. To determine the minimum inhibitory of nisin Z loaded on CD-NS formulations, agar well diffusion plates were used. Then, the bactericide concentrations of nisin Z loaded on CD-NS formulations were determined against Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria, using microdilution brain heart infusion (BHI) and tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The minimum and bactericide inhibitory values of the nisin complex with NSs were potentially decreased against both bacteria, compared with the nisin-free sample, while the nisin complex with ß-CD showed lower antibacterial activity. The antimicrobial effect was also demonstrated by free NSs. Furthermore, the total viable counts (TVCs) antibacterial experiment indicated that the combination of nisin Z in both PMDA and CDI ß-CD-based NSs, especially CDI, can provide a better conservative effect on cooked chicken meat. Generally, the present study outcomes suggest that the cross-linked ß-CD-based NSs can present their own antimicrobial potency or serve as promising carriers to deliver and enhance the antibacterial action of nisin Z.

18.
Int J Pharm ; 625: 122063, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35964827

RESUMO

The development of a therapeutic system for hepatic fibrosis has become a research hotspot to date. Butein, a simple chalcone derivative, displays anti-fibrotic effects through different pathways. However, impurities, low solubility, and low concentration in the target tissue hinder therapy with herbal ingredients. Hepatic stellate cells (HSCs), the vitamin A (VA) storage cells, as the main contributors to liver fibrogenesis, are not readily accessible to drugs owing to their anatomical location. Targeted delivery of therapeutics to the activated HSCs is therefore critical for successful treatment. For these reasons, the current study aimed at increasing butein delivery to the liver. Hence, high purity butein was synthesized in three steps. A novel VA-Myrj52 ester conjugate was also synthesized using all-trans retinoic acid and a hydrophilic emulsifier (Myrj52) as a targeting agent. Next, butein was encapsulated inside the novel VA-modified solid lipid nanoparticles (VA-SLNs) and studied in vitro and in vivo. According to our evaluations, negatively charged SLNs with a mean diameter of 150 nm and entrapment efficacy of 75 % were successful in liver fibrosis amelioration. Intraperitoneal (i.p.) injection of VA-SLNs in fibrotic rats, for four weeks long, reduced serum AST and ALT by 58% (P, 0.001) and 72% (P, 0.05), respectively, concerning the CCl4 group. Additionally, histologic damage score decline and normalization of tissue oxidative stress markers collectively confirmed the efficacy of formulations in hepatic fibrosis and kidney damage amelioration.


Assuntos
Chalconas , Animais , Células Estreladas do Fígado/metabolismo , Lipossomos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Nanopartículas , Ratos , Vitamina A/metabolismo
19.
Bioengineering (Basel) ; 9(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36550971

RESUMO

This study tested the anticoagulant effect of cyclodextrin (CD) hyper-branched-based polymers (HBCD-Pols). These polymers were synthesized and tested for their coagulant characteristics in vitro and in vivo. Due to their polymeric structure and anionic nature, the polymers can chelate Ca2+, reducing the free quantity in blood. HBCD-Pol increased the blood clotting time, PT, and aPTT 3.5 times over the control, showing a better effect than even ethylenediaminetetraacetic acid (EDTA), as occured with recalcification time as well. A titration of HBCD-Pol and EDTA showed exciting differences in the ability to complex Ca2+ between both materials. Before executing in vivo studies, a hemocompatibility study was carried out with less than 5% red blood cell hemolysis. The fibrinogen consumption and bleeding time were analyzed in vivo. The fibrinogen was considerably decreased in the presence of HBCD-Pol in a higher grade than EDTA, while the bleeding time was longer with HBCD-Pols. The results demonstrate that the anticoagulant effect of this HBCD-Pol opens novel therapy possibilities due to the possible transport of drugs in this carrier. This would give combinatorial effects and a potential novel anticoagulant therapy with HBCD-Pol per se.

20.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559184

RESUMO

In this article, we used monolayer two dimensional (2D) and 3D multicellular spheroid models to improve our understanding of the gene delivery process of a new modified cationic hyper-branched cyclodextrin-based polymer (Ppoly)-loaded plasmid encoding Enhanced Green Fluorescent Protein (EGFP). A comparison between the cytotoxicity effect and transfection efficiency of the plasmid DNA (pDNA)-loaded Ppoly system in 2D and 3D spheroid cells determined that the transfection efficiency and cytotoxicity of Ppoly-pDNA nanocomplexes were lower in 3D spheroids than in 2D monolayer cells. Furthermore, histopathology visualization of Ppoly-pDNA complex cellular uptake in 3D spheroids demonstrated that Ppoly penetrated into the inner layers. This study indicated that the Ppoly, as a non-viral gene delivery system in complex with pDNA, is hemocompatible, non-toxic, high in encapsulation efficiency, and has good transfection efficiency in both 2D and 3D cell cultures compared to free pDNA and lipofectamine (as the control).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA