Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
2.
Waste Manag ; 32(11): 2096-105, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22088960

RESUMO

The aim of this research was to determine appropriate treatment technique for effective treatment of heavily polluted landfill leachate. We accomplished several treatment experiments: (i) aerobic biological treatment, (ii) chemical coagulation, (iii) advanced oxidation process (AOP) and (iv) several combined treatment strategies. Efficiency of these treatment procedures were monitored by analysing COD and colour removal. Leachate used for this study was taken from Matuail landfill site at Dhaka city. With extended aeration process which is currently used in Matuail landfill site for leachate treatment, maximum COD and colour removal of 36% and 20%, respectively could be achieved with optimum retention period of 7 days. With optimum aluminium sulphate dose of 15,000 mg/L and pH value of 7.0, maximum COD and colour removals of 34% and 66%, respectively were observed by using chemical coagulation. With optimum pH of 5.0 and optimum dosages of reagents having H(2)O(2)/Fe(2+) molar ratio of 1.3 the highest removal of COD and colour were found 68% and 87%, respectively with sludge production of 55%. Fenton treatment which is an advanced oxidation process was the most successful between these three separate treatment procedures. Among the combined treatment options performed, extended aeration followed by Fenton method was the most suitable one.


Assuntos
Eliminação de Resíduos/métodos , Poluentes Químicos da Água , Purificação da Água/métodos , Aerobiose , Amônia/isolamento & purificação , Bangladesh , Análise da Demanda Biológica de Oxigênio , Cor , Países em Desenvolvimento , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Águas Residuárias , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA