Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(11): 1983-1996, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36201358

RESUMO

The development of rapidly acting cyanide countermeasures using intramuscular injection (IM) represents an unmet medical need to mitigate toxicant exposures in mass casualty settings. Previous work established that cisplatin and other platinum(II) or platinum(IV)-based agents effectively mitigate cyanide toxicity in zebrafish. Cyanide's in vivo reaction with platinum-containing materials was proposed to reduce the risk of acute toxicities. However, cyanide antidote activity depended on a formulation of platinum-chloride salts with dimethyl sulfoxide (DMSO) followed by dilution in phosphate-buffered saline (PBS). A working hypothesis to explain the DMSO requirement is that the formation of platinum-sulfoxide complexes activates the cyanide scavenging properties of platinum. Preparations of isolated NaPtCl5-DMSO and Na (NH3)2PtCl-DMSO complexes in the absence of excess DMSO provided agents with enhanced reactivity toward cyanide in vitro and fully recapitulated in vivo cyanide rescue in zebrafish and mouse models. The enhancement of the cyanide scavenging effects of the DMSO ligand could be attributed to the activation of platinum(IV) and (II) with a sulfur ligand. Unfortunately, the efficacy of DMSO complexes was not robust when administered IM. Alternative Pt(II) materials containing sulfide and amine ligands in bidentate complexes show enhanced reactivity toward cyanide addition. The cyanide addition products yielded tetracyanoplatinate(II), translating to a stoichiometry of 1:4 Pt to each cyanide scavenger. These new agents demonstrate a robust and enhanced potency over the DMSO-containing complexes using IM administration in mouse and rabbit models of cyanide toxicity. Using the zebrafish model with these Pt(II) complexes, no acute cardiotoxicity was detected, and dose levels required to reach lethality exceeded 100 times the effective dose. Data are presented to support a general chemical design approach that can expand a new lead candidate series for developing next-generation cyanide countermeasures.


Assuntos
Antineoplásicos , Platina , Camundongos , Coelhos , Animais , Platina/química , Peixe-Zebra , Cianetos , Dimetil Sulfóxido , Ligantes , Sulfetos , Antineoplásicos/farmacologia
2.
Inhal Toxicol ; 33(1): 25-32, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356664

RESUMO

BACKGROUND: Methyl mercaptan occurs naturally in the environment and is found in a variety of occupational settings, including the oil, paper, plastics, and pesticides industries. It is a toxic gas and deaths from methyl mercaptan exposure have occurred. The Department of Homeland Security considers it a high threat chemical agent that could be used by terrorists. Unfortunately, no specific treatment exists for methyl mercaptan poisoning. METHODS: We conducted a randomized trial in 12 swine comparing no treatment to intramuscular injection of the vitamin B12 analog cobinamide (2.0 mL, 12.5 mg/kg) following acute inhalation of methyl mercaptan gas. Physiological and laboratory parameters were similar in the control and cobinamide-treated groups at baseline and at the time of treatment. RESULTS: All six cobinamide-treated animals survived, whereas only one of six control animals lived (17% survival) (p = 0.0043). The cobinamide-treated animals returned to a normal breathing pattern by 3.8 ± 1.1 min after treatment (mean ± SD), while all but one animal in the control group had intermittent gasping, never regaining a normal breathing pattern. Blood pressure and arterial oxygen saturation returned to baseline values within 15 minutes of cobinamide-treatment. Plasma lactate concentration increased progressively until death (10.93 ± 6.02 mmol [mean ± SD]) in control animals, and decreased toward baseline (3.79 ± 2.93 mmol [mean ± SD]) by the end of the experiment in cobinamide-treated animals. CONCLUSION: We conclude that intramuscular administration of cobinamide improves survival and clinical outcomes in a large animal model of acute, high dose methyl mercaptan poisoning.


Assuntos
Antídotos/farmacologia , Cobamidas/farmacologia , Compostos de Sulfidrila/toxicidade , Animais , Antídotos/administração & dosagem , Cobamidas/administração & dosagem , Feminino , Exposição por Inalação , Injeções Intramusculares , Masculino , Distribuição Aleatória , Suínos
3.
Chem Res Toxicol ; 32(4): 718-726, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30724077

RESUMO

The direct analysis of cyanide (HCN or CN- inclusively symbolized as CN) to confirm exposure has major limitations due to cyanide's volatility, reactivity, and short half-life in biological fluids. These limitations have led to the exploration of cyanide detoxification products for indirect verification of cyanide exposure. Although cyanide interacts strongly with sulfur-containing molecules, to date, biomarkers resulting from the interaction of cyanide with glutathione (GSH; i.e., a biologically abundant sulfur-donating biomolecule) have yet to be discovered. In this study, we studied the interaction of CN and GSH to produce 2-aminothiazoline-4-oxoaminoethanioc acid (ATOEA). An LC-MS/MS method was developed and validated to analyze ATOEA from plasma, producing a linear range of 0.5-50 µM, a limit of detection of 200 nM, and excellent precision and accuracy. ATOEA concentrations were significantly elevated in the plasma of animals following cyanide exposure. Moreover, the production of ATOEA from cyanide exposure was confirmed by detection of both ATOEA and ATOEA-13C15N in rabbit plasma ( N = 11 animals) following administration of NaCN:K13C15N (1:1), with a similar amount of ATOEA and ATOEA-13C15N formed ( R2 = 0.9924, p < 0.05). The concentration of ATOEA increased with cyanide dose and then decreased rapidly when an antidote was administrated. This study definitively showed that ATOEA is produced from interaction of CN and GSH and can serve as a biomarker of cyanide exposure.


Assuntos
Cianetos/metabolismo , Glutationa/metabolismo , Tiazolidinas/metabolismo , Animais , Cianetos/sangue , Cianetos/química , Glutationa/sangue , Glutationa/química , Cinética , Estrutura Molecular , Coelhos , Tiazolidinas/sangue , Tiazolidinas/química
4.
Ann Emerg Med ; 74(3): 423-429, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31080026

RESUMO

STUDY OBJECTIVE: Cyanide is a deadly poison, particularly with oral exposure, in which larger doses can occur before any symptoms develop. Multiple governmental agencies highlight oral cyanide as an agent that can be used in a terrorist attack because it can be easily weaponized and is readily available. Currently, there are no Food and Drug Administration-approved antidotes specifically for oral cyanide. An oral countermeasure that can neutralize and prevent absorption of cyanide from the gastrointestinal tract after oral exposure is needed. The objective of this study is to determine if the combination of glycine and sodium thiosulfate administered orally is effective in reducing mortality in a large, swine model of oral cyanide toxicity. METHODS: Nine swine (45 to 55 kg) were instrumented, sedated, and stabilized. Potassium cyanide (at 8 mg/kg) in saline solution was delivered as a onetime bolus through an orogastric tube. Three minutes after cyanide administration, animals that were randomized to the treatment group received sodium thiosulfate (508.2 mg/kg, 3.25-M solution) and glycine (30 mg/kg, 3.5-M solution) through an orogastric tube. Survival at 60 minutes was the primary outcome. We compared survival between groups by log-rank Mantel-Cox analysis and trended laboratory results and vital signs. RESULTS: At baseline and treatment, all animals were similar. Survival at 60 minutes was 100% in treated animals compared with 0% in the control group (P=.003). By the study end, defined as death or 60 minutes after cyanide administration, there was a significant difference in the lactate concentration between the treatment and control groups (control 9.43 mmol/L [SD 4.08]; treatment 1.66 mmol/L [SD 0.82]; difference between means 7.69 mmol/L [SD 2.07]; 95% confidence interval difference -14.05 to -1.32). Mean arterial pressure was significantly different between the treatment and control groups at study end (control 26 mm Hg [SD 6.7]; treatment 81 mm Hg [SD 14]; difference between means 55.2 mm Hg [SD 7.1]; 95% confidence interval difference 37.8 to 72.6). pH and oxygen saturation were also significantly different between the treatment and control groups at study end. CONCLUSION: The combination of oral sodium thiosulfate and glycine significantly improved survival and physiologic parameters in a large-animal model of oral cyanide toxicity.


Assuntos
Antídotos/administração & dosagem , Glicina/administração & dosagem , Cianeto de Potássio/intoxicação , Tiossulfatos/administração & dosagem , Administração Oral , Animais , Antídotos/farmacocinética , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Glicina/farmacologia , Humanos , Venenos , Distribuição Aleatória , Suínos , Tiossulfatos/farmacologia , Fatores de Tempo
5.
Ann Emerg Med ; 69(6): 718-725.e4, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28041825

RESUMO

STUDY OBJECTIVE: The 2 antidotes for acute cyanide poisoning in the United States must be administered by intravenous injection. In the out-of-hospital setting, intravenous injection is not practical, particularly for mass casualties, and intramuscular injection would be preferred. The purpose of this study is to determine whether sodium nitrite and sodium thiosulfate are effective cyanide antidotes when administered by intramuscular injection. METHODS: We used a randomized, nonblinded, parallel-group study design in 3 mammalian models: cyanide gas inhalation in mice, with treatment postexposure; intravenous sodium cyanide infusion in rabbits, with severe hypotension as the trigger for treatment; and intravenous potassium cyanide infusion in pigs, with apnea as the trigger for treatment. The drugs were administered by intramuscular injection, and all 3 models were lethal in the absence of therapy. RESULTS: We found that sodium nitrite and sodium thiosulfate individually rescued 100% of the mice, and that the combination of the 2 drugs rescued 73% of the rabbits and 80% of the pigs. In all 3 species, survival in treated animals was significantly better than in control animals (log rank test, P<.05). In the pigs, the drugs attenuated an increase in the plasma lactate concentration within 5 minutes postantidote injection (difference: plasma lactate, saline solution-treated versus nitrite- or thiosulfate-treated 1.76 [95% confidence interval 1.25 to 2.27]). CONCLUSION: We conclude that sodium nitrite and sodium thiosulfate administered by intramuscular injection are effective against severe cyanide poisoning in 3 clinically relevant animal models of out-of-hospital emergency care.


Assuntos
Antídotos/administração & dosagem , Antídotos/uso terapêutico , Cianetos/intoxicação , Nitrito de Sódio/administração & dosagem , Nitrito de Sódio/uso terapêutico , Tiossulfatos/administração & dosagem , Tiossulfatos/uso terapêutico , Animais , Antídotos/farmacologia , Modelos Animais de Doenças , Injeções Intramusculares , Masculino , Camundongos , Coelhos , Distribuição Aleatória , Nitrito de Sódio/farmacologia , Sus scrofa , Tiossulfatos/farmacologia
6.
Anal Chem ; 86(3): 1845-52, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24383576

RESUMO

Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent ß-isoindole. An integrated cyanide capture "apparatus", consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was <3 min, the linear range was 3.13-200 µM, and the limit of detection was 0.78 µM. None of the potential interferents investigated (NaHS, NH4OH, NaSCN, and human serum albumin) produced a signal that could be interpreted as a false positive or a false negative for cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.


Assuntos
Técnicas de Química Analítica/instrumentação , Cianetos/sangue , Exposição Ambiental/análise , Métodos Analíticos de Preparação de Amostras , Animais , Cianetos/toxicidade , Coelhos , Espectrometria de Fluorescência
7.
FASEB J ; 27(5): 1928-38, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23345455

RESUMO

Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.


Assuntos
Antídotos/uso terapêutico , Biomarcadores/análise , Cianetos/intoxicação , Riboflavina/uso terapêutico , Animais , Ácidos e Sais Biliares/metabolismo , Avaliação Pré-Clínica de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Inosina/metabolismo , Metabolômica , Nitroprussiato/uso terapêutico , Coelhos , Peixe-Zebra
8.
IEEE J Sel Top Quantum Electron ; 20(2): 7100108, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24771992

RESUMO

For the diagnosis of atherosclerosis, biomedical imaging techniques such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have been developed. The combined use of IVUS and OCT is hypothesized to remarkably increase diagnostic accuracy of vulnerable plaques. We have developed an integrated IVUS-OCT imaging apparatus, which includes the integrated catheter, motor drive unit, and imaging system. The dual-function imaging catheter has the same diameter of current clinical standard. The imaging system is capable for simultaneous IVUS and OCT imaging in real time. Ex vivo and in vivo experiments on rabbits with atherosclerosis were conducted to demonstrate the feasibility and superiority of the integrated intravascular imaging modality.

9.
Metabolites ; 14(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786756

RESUMO

Purines are the building blocks of DNA/RNA, energy substrates, and cofactors. Purine metabolites, including ATP, GTP, NADH, and coenzyme A, are essential molecules in diverse biological processes such as energy metabolism, signal transduction, and enzyme activity. When purine levels increase, excess purines are either recycled to synthesize purine metabolites or catabolized to the end product uric acid. Purine catabolism increases during states of low oxygen tension (hypoxia and ischemia), but this metabolic pathway is incompletely understood in the context of histotoxic hypoxia (i.e., inhibition of oxygen utilization despite normal oxygen tension). In rabbits exposed to cyanide-a classical histotoxic hypoxia agent-we demonstrated significant increases in several concordant metabolites in the purine catabolic pathway (including plasma levels of uric acid, xanthosine, xanthine, hypoxanthine, and inosine) via mass spectrometry-based metabolite profiling. Pharmacological inhibition of the purine catabolic pathway with oxypurinol mitigated the deleterious effects of cyanide on skeletal muscle cytochrome c oxidase redox state, measured by non-invasive diffuse optical spectroscopy. Finally, plasma uric acid levels correlated strongly with those of lactic acid, an established clinical biomarker of cyanide exposure, in addition to a tissue biomarker of cyanide exposure (skeletal muscle cytochrome c oxidase redox state). Cumulatively, these findings not only shed light on the in vivo role(s) of cyanide but also have implications in the field of medical countermeasure (MCM) development.

10.
Toxicol Sci ; 191(1): 90-105, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36326479

RESUMO

Cyanide-a fast-acting poison-is easy to obtain given its widespread use in manufacturing industries. It is a high-threat chemical agent that poses a risk of occupational exposure in addition to being a terrorist agent. FDA-approved cyanide antidotes must be given intravenously, which is not practical in a mass casualty setting due to the time and skill required to obtain intravenous access. Glyoxylate is an endogenous metabolite that binds cyanide and reverses cyanide-induced redox imbalances independent of chelation. Efficacy and biochemical mechanistic studies in an FDA-approved preclinical animal model have not been reported. Therefore, in a swine model of cyanide poisoning, we evaluated the efficacy of intramuscular glyoxylate on clinical, metabolic, and biochemical endpoints. Animals were instrumented for continuous hemodynamic monitoring and infused with potassium cyanide. Following cyanide-induced apnea, saline control or glyoxylate was administered intramuscularly. Throughout the study, serial blood samples were collected for pharmacokinetic, metabolite, and biochemical studies, in addition, vital signs, hemodynamic parameters, and laboratory values were measured. Survival in glyoxylate-treated animals was 83% compared with 12% in saline-treated control animals (p < .01). Glyoxylate treatment improved physiological parameters including pulse oximetry, arterial oxygenation, respiration, and pH. In addition, levels of citric acid cycle metabolites returned to baseline levels by the end of the study. Moreover, glyoxylate exerted distinct effects on redox balance as compared with a cyanide-chelating countermeasure. In our preclinical swine model of lethal cyanide poisoning, intramuscular administration of the endogenous metabolite glyoxylate improved survival and clinical outcomes, and ameliorated the biochemical effects of cyanide.


Assuntos
Cianetos , Intoxicação , Suínos , Animais , Cianetos/toxicidade , Modelos Animais de Doenças , Antídotos/farmacologia , Antídotos/uso terapêutico , Hemodinâmica , Glioxilatos/uso terapêutico , Intoxicação/tratamento farmacológico
11.
Environ Toxicol Pharmacol ; 96: 103998, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228991

RESUMO

We sought to evaluate the efficacy of trapping free hydrogen sulfide (H2S) following severe H2S intoxication. Sodium hydrosulfide solution (NaHS, 20 mg/kg) was administered intraperitoneally in 69 freely moving rats. In a first group (protocol 1), 40 rats were randomly assigned to receive saline (n = 20) or the cobalt compound tetranitrocobinamide (TNCbi) (n = 20, 75 mg/kg iv), one minute into coma, when free H2S was still present in the blood. A second group of 27 rats received TNCbi or saline, following epinephrine, 5 min into coma, when the concentration of free H2S has drastically decreased in the blood. In protocol 1, TNCbi significantly increased immediate survival (65 vs 20 %, p < 0.01) while in protocol 2, administration of TNCbi led to the same outcome as untreated animals. We hypothesize that the decreased efficacy of TNCbi with time likely reflects the rapid spontaneous disappearance of the pool of free H2S in the blood following H2S exposure.


Assuntos
Coma , Sulfeto de Hidrogênio , Animais , Ratos , Sulfetos , Sulfeto de Hidrogênio/toxicidade , Epinefrina
12.
Clin Toxicol (Phila) ; 60(5): 615-622, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34989638

RESUMO

CONTEXT: Methyl mercaptan (CH3SH) is a colorless, toxic gas with potential for occupational exposure and used as a weapon of mass destruction. Inhalation at high concentrations can result in dyspnea, hypoventilation, seizures, and death. No specific methyl mercaptan antidote exists, highlighting a critical need for such an agent. Here, we investigated the mechanism of CH3SH toxicity, and rescue from CH3SH poisoning by the vitamin B12 analog cobinamide, in mammalian cells. We also developed lethal CH3SH inhalation models in mice and rabbits, and tested the efficacy of intramuscular injection of cobinamide as a CH3SH antidote. RESULTS: We found that cobinamide binds to CH3SH (Kd = 84 µM), and improved growth of cells exposed to CH3SH. CH3SH reduced cellular oxygen consumption and intracellular ATP content and activated the stress protein c-Jun N-terminal kinase (JNK); cobinamide reversed these changes. A single intramuscular injection of cobinamide (20 mg/kg) rescued 6 of 6 mice exposed to a lethal dose of CH3SH gas, while all six saline-treated mice died (p = 0.0013). In rabbits exposed to CH3SH gas, 11 of 12 animals (92%) treated with two intramuscular injections of cobinamide (50 mg/kg each) survived, while only 2 of 12 animals (17%) treated with saline survived (p = 0.001). CONCLUSION: We conclude that cobinamide could potentially serve as a CH3SH antidote.


Assuntos
Antídotos , Cobamidas , Animais , Antídotos/uso terapêutico , Chlorocebus aethiops , Humanos , Camundongos , Coelhos , Compostos de Sulfidrila , Vitamina B 12
13.
Clin Toxicol (Phila) ; 60(3): 332-341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34328378

RESUMO

CONTEXT: Hydrogen cyanide and methanethiol are two toxic gases that inhibit mitochondrial cytochrome c oxidase. Cyanide is generated in structural fires and methanethiol is released by decaying organic matter. Current treatments for cyanide exposure do not lend themselves to treatment in the field and no treatment exists for methanethiol poisoning. Sodium tetrathionate (tetrathionate), a product of thiosulfate oxidation, could potentially serve as a cyanide antidote, and, based on its chemical structure, we hypothesized it could react with methanethiol. RESULTS: We show that tetrathionate, unlike thiosulfate, reacts directly with cyanide in vitro under physiological conditions, and based on rabbit studies where we monitor cyanide poisoning in real-time, tetrathionate likely reacts directly with cyanide in vivo. We found that tetrathionate administered by intramuscular injection rescues >80% of juvenile, young adult, and old adult mice from exposure to inhaled hydrogen cyanide gas that is >80% lethal. Tetrathionate also rescued young adult rabbits from intravenously administered sodium cyanide. Tetrathionate was reasonably well-tolerated by mice and rats, yielding a therapeutic index of ∼5 in juvenile and young adult mice, and ∼3.3 in old adult mice; it was non-mutagenic in Chinese Hamster ovary cells and by the Ames bacterial test. We found by gas chromatography-mass spectrometry that both tetrathionate and thiosulfate react with methanethiol to generate dimethyldisulfide, but that tetrathionate was much more effective than thiosulfate at recovering intracellular ATP in COS-7 cells and rescuing mice from a lethal exposure to methanethiol gas. CONCLUSION: We conclude that tetrathionate has the potential to be an effective antidote against cyanide and methanethiol poisoning.


Assuntos
Antídotos , Ácido Tetratiônico , Animais , Antídotos/uso terapêutico , Células CHO , Cricetinae , Cricetulus , Cianetos , Humanos , Camundongos , Coelhos , Ratos , Compostos de Sulfidrila , Tiossulfatos
14.
Sci Rep ; 12(1): 4982, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322094

RESUMO

Although cyanide's biological effects are pleiotropic, its most obvious effects are as a metabolic poison. Cyanide potently inhibits cytochrome c oxidase and potentially other metabolic enzymes, thereby unleashing a cascade of metabolic perturbations that are believed to cause lethality. From systematic screens of human metabolites using a zebrafish model of cyanide toxicity, we have identified the TCA-derived small molecule glyoxylate as a potential cyanide countermeasure. Following cyanide exposure, treatment with glyoxylate in both mammalian and non-mammalian animal models confers resistance to cyanide toxicity with greater efficacy and faster kinetics than known cyanide scavengers. Glyoxylate-mediated cyanide resistance is accompanied by rapid pyruvate consumption without an accompanying increase in lactate concentration. Lactate dehydrogenase is required for this effect which distinguishes the mechanism of glyoxylate rescue as distinct from countermeasures based solely on chemical cyanide scavenging. Our metabolic data together support the hypothesis that glyoxylate confers survival at least in part by reversing the cyanide-induced redox imbalances in the cytosol and mitochondria. The data presented herein represent the identification of a potential cyanide countermeasure operating through a novel mechanism of metabolic modulation.


Assuntos
Glioxilatos , Peixe-Zebra , Animais , Cianetos/toxicidade , Mamíferos , Ácido Pirúvico
15.
Anal Chem ; 83(11): 4319-24, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21553921

RESUMO

A simple, sensitive optical analyzer for the rapid determination of cyanide in blood in point of care applications is described. HCN is liberated by the addition of 20% H(3)PO(4) and is absorbed by a paper filter impregnated with borate-buffered (pH 9.0) hydroxoaquocobinamide (hereinafter called cobinamide). Cobinamide on the filter changes color from orange (λ(max) = 510 nm) to violet (λ(max) = 583 nm) upon reaction with cyanide. This color change is monitored in the transmission mode by a light emitting diode (LED) with a 583 nm emission maximum and a photodiode detector. The observed rate of color change increases 10 times when the cobinamide solution for filter impregnation is prepared in borate-buffer rather than in water. The use of a second LED emitting at 653 nm and alternate pulsing of the LEDs improves the limit of detection by 4 times to ~0.5 µM for a 1 mL blood sample. Blood cyanide levels of imminent concern (≥10 µM) can be accurately measured in ~2 min. The response is proportional to the mass of cyanide in the sample: smaller sample volumes can be successfully used with proportionate change in the concentration LODs. Bubbling air through the blood-acid mixture was found effective for mixing of the acid with the sample and the liberation of HCN. A small amount of ethanol added to the top of the blood was found to be the most effective means to prevent frothing during aeration. The relative standard deviation (RSD) for repetitive determination of blood samples containing 9 µM CN was 1.09% (n = 5). The technique was compared blind with a standard microdiffusion-spectrophotometric method used for the determination of cyanide in rabbit blood. The results showed good correlation (slope 1.05, r(2) 0.9257); independent calibration standards were used.


Assuntos
Cianetos/sangue , Espectrofotometria/métodos , Animais , Boratos/química , Cobamidas/química , Ácidos Fosfóricos/química , Sistemas Automatizados de Assistência Junto ao Leito , Coelhos
16.
J Med Toxicol ; 17(3): 257-264, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33821433

RESUMO

INTRODUCTION: Cyanide is a deadly poison, particularly with oral exposure where larger doses can occur before symptoms develop. Prior studies and multiple governmentagencies highlight oral cyanide as an agent with the potential for use in a terrorist attack. Currently, there are no FDA approved antidotes specific to oralcyanide. An oral countermeasure that can neutralize and prevent absorption of cyanide from the GI tract after oral exposure is needed. Our objective was toevaluate the efficacy of oral sodium thiosulfate on survival and clinical outcomes in a large, swine model of severe cyanide toxicity. METHODS: Swine (45-55kg) were instrumented, sedated, and stabilized. Potassium cyanide (8 mg/kg KCN) in saline was delivered as a one-time bolus via an orogastric tube. Three minutes after cyanide, animals randomized to the treatment group received sodium thiosulfate (510 mg/kg, 3.25 M solution) via orogastric tube. Our primary outcome was survival at 60 minutes after exposure. We compared survival between groups by log-rank, Mantel-Cox analysis and trended labs and vital signs. RESULTS: At baseline and time of treatment all animals had similar weights, vital signs, and laboratory values. Survival at 60 min was 100% in treated animals compared to 0% in the control group (p=0.0027). Animals in the control group became apneic and subsequently died by 35.0 min (20.2,48.5) after cyanide exposure. Mean arterial pressure was significantly higher in the treatment group compared to controls (p=0.008). Blood lactate (p=0.02) and oxygen saturation (p=0.02) were also significantly different between treatment and control groups at study end. CONCLUSION: Oral administration of sodium thiosulfate improved survival, blood pressure, respirations, and blood lactate concentrations in a large animal model of acute oral cyanide toxicity.


Assuntos
Antídotos/uso terapêutico , Cianetos/toxicidade , Tiossulfatos/uso terapêutico , Administração Oral , Animais , Humanos , Modelos Animais , Suínos , Tiossulfatos/administração & dosagem , Resultado do Tratamento
17.
Anal Chem ; 82(10): 4216-21, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20420400

RESUMO

Cyanide, a well-known toxic substance that could be used as a weapon of mass destruction, is likely responsible for a substantial percentage of smoke inhalation deaths. The vitamin B(12) precursor cobinamide binds cyanide with high affinity, changing color and, correspondingly, its spectrophotometric spectrum in the ultraviolet/visible light range. Based on these spectral changes, we developed a new facile method to measure cyanide in blood using cobinamide. The limit of detection was 0.25 nmol, while the limit of quantitation was approximately 0.5 nmol. The method was reliable, requires minimal equipment, and correlated well with a previously established method. Moreover, we adapted it for rapid qualitative assessment of cyanide concentration, which could be used in the field to identify cyanide-poisoned subjects for immediate treatment.


Assuntos
Cobamidas/química , Cianetos/sangue , Limite de Detecção , Espectrofotometria , Vitamina B 12/química
18.
Toxicol Appl Pharmacol ; 248(3): 269-76, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20705081

RESUMO

The aim of this study is to investigate the ability of intramuscular and intravenous sulfanegen sodium treatment to reverse cyanide effects in a rabbit model as a potential treatment for mass casualty resulting from cyanide exposure. Cyanide poisoning is a serious chemical threat from accidental or intentional exposures. Current cyanide exposure treatments, including direct binding agents, methemoglobin donors, and sulfur donors, have several limitations. Non-rhodanese mediated sulfur transferase pathways, including 3-mercaptopyruvate sulfurtransferase (3-MPST) catalyze the transfer of sulfur from 3-MP to cyanide, forming pyruvate and less toxic thiocyanate. We developed a water-soluble 3-MP prodrug, 3-mercaptopyruvatedithiane (sulfanegen sodium), with the potential to provide a continuous supply of substrate for CN detoxification. In addition to developing a mass casualty cyanide reversal agent, methods are needed to rapidly and reliably diagnose and monitor cyanide poisoning and reversal. We use non-invasive technology, diffuse optical spectroscopy (DOS) and continuous wave near infrared spectroscopy (CWNIRS) to monitor physiologic changes associated with cyanide exposure and reversal. A total of 35 animals were studied. Sulfanegen sodium was shown to reverse the effects of cyanide exposure on oxyhemoglobin and deoxyhemoglobin rapidly, significantly faster than control animals when administered by intravenous or intramuscular routes. RBC cyanide levels also returned to normal faster following both intramuscular and intravenous sulfanegen sodium treatment than controls. These studies demonstrate the clinical potential for the novel approach of supplying substrate for non-rhodanese mediated sulfur transferase pathways for cyanide detoxification. DOS and CWNIRS demonstrated their usefulness in optimizing the dose of sulfanegen sodium treatment.


Assuntos
Cianetos/toxicidade , Modelos Animais de Doenças , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Sulfurtransferases/química , Sulfurtransferases/uso terapêutico , Animais , Cianetos/antagonistas & inibidores , Coelhos
19.
Ann Emerg Med ; 55(4): 352-63, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20045579

RESUMO

STUDY OBJECTIVE: Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B(12)) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigate the use of intramuscular cobinamide sulfite to reverse cyanide toxicity-induced physiologic changes in a sublethal cyanide exposure animal model and determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. METHODS: New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous-wave near-infrared spectroscopy monitoring of tissue oxyhemoglobin and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). RESULTS: Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and within deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system occurred within a mean of 1,032 minutes in the control group and 9 minutes in the cobinamide group, with a difference of 1,023 minutes (95% confidence interval 116 to 1,874 minutes). In muscle tissue, recovery times were 76 and 24 minutes, with a difference of 52 minutes (95% confidence interval 7 to 98 minutes). RBC cyanide levels returned toward normal significantly faster in cobinamide sulfite-treated animals than in control animals. CONCLUSION: Intramuscular cobinamide sulfite rapidly and effectively reverses the physiologic effects of cyanide poisoning, suggesting that a compact cyanide antidote kit can be developed for mass casualty cyanide exposures.


Assuntos
Antídotos/uso terapêutico , Cobamidas/uso terapêutico , Cianetos/intoxicação , Animais , Antídotos/administração & dosagem , Antídotos/farmacocinética , Cobamidas/administração & dosagem , Cobamidas/farmacocinética , Modelos Animais de Doenças , Hemoglobinas/análise , Injeções Intramusculares , Oxiemoglobinas/análise , Coelhos , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
20.
Clin Toxicol (Phila) ; 58(1): 29-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31008657

RESUMO

Background: Cyanide is a metabolic poison used in multiple industries and is a high threat chemical agent. Current antidotes require intravenous administration, limiting their usefulness in a mass casualty scenario. Sodium tetrathionate reacts directly with cyanide yielding thiosulfate and the non-toxic compound thiocyanate. Thiosulfate, in turn, neutralizes a second molecule of cyanide, thus, per mole, sodium tetrathionate neutralizes two moles of cyanide. Historical studies examined its efficacy as a cyanide antidote, but it has not been evaluated in a clinically relevant, large animal model, nor has it previously been administered by intramuscular injection.Objective: The objective of this study is to evaluate the efficacy of intramuscular sodium tetrathionate on survival and clinical outcomes in a large, swine model of severe cyanide toxicity.Methods: Anesthetized swine were instrumented for continuous monitoring of hemodynamics, then acclimated and breathing spontaneously prior to potassium cyanide infusion (0.17 mg/kg/min). At 6-min post-apnea (no breaths for 20 s), the cyanide infusion was terminated, and animals were treated with sodium tetrathionate (∼18 mg/kg) or normal saline control. Clinical parameters and laboratory values were evaluated at various time points until death or termination of the experiment (90 min post-treatment).Results: Laboratory values, vital signs, and time to apnea were similar in both groups at baseline and treatment. Survival in the sodium tetrathionate treated group was 100% and 17% in controls (p = 0.0043). All animals treated with sodium tetrathionate returned to breathing at a mean time of 10.85 min after antidote, and all but one control remained apneic through end of the experiment. Animals treated with tetrathionate showed improvement in blood lactate (p ≤ 0.002) starting at 30 min post-treatment. The average time to death in the control group is 63.3 ± 23.2 min. No systemic or localized adverse effects of intramuscular administration of sodium tetrathionate were observed.Conclusion: Sodium tetrathionate significantly improves survival and clinical outcomes in a large, swine model of acute cyanide poisoning.


Assuntos
Antídotos/uso terapêutico , Cianetos/toxicidade , Ácido Tetratiônico/uso terapêutico , Animais , Antídotos/administração & dosagem , Cianetos/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Injeções Intramusculares , Suínos , Ácido Tetratiônico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA