Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Neurosci ; 59(6): 1386-1403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155106

RESUMO

Successful social interactions between mothers and children are hypothesised to play a significant role in a child's social, cognitive and language development. Earlier research has confirmed, through structured experimental paradigms, that these interactions could be underpinned by coordinated neural activity. Nevertheless, the extent of neural synchrony during real-life, ecologically valid interactions between mothers and their children remains largely unexplored. In this study, we investigated mother-child inter-brain synchrony using a naturalistic free-play paradigm. We also examined the relationship between neural synchrony, verbal communication patterns and personality traits to further understand the underpinnings of brain synchrony. Twelve children aged between 3 and 5 years old and their mothers participated in this study. Neural synchrony in mother-child dyads were measured bilaterally over frontal and temporal areas using functional Near Infra-red Spectroscopy (fNIRS) whilst the dyads were asked to play with child-friendly toys together (interactive condition) and separately (independent condition). Communication patterns were captured via video recordings and conversational turns were coded. Compared to the independent condition, mother-child dyads showed increased neural synchrony in the interactive condition across the prefrontal cortex and temporo-parietal junction. There was no significant relationship found between neural synchrony and turn-taking and between neural synchrony and the personality traits of each member of the dyad. Overall, we demonstrate the feasibility of measuring inter-brain synchrony between mothers and children in a naturalistic environment. These findings can inform future study designs to assess inter-brain synchrony between parents and pre-lingual children and/or children with communication needs.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Pré-Escolar , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Pré-Frontal , Mapeamento Encefálico/métodos , Relações Mãe-Filho/psicologia
2.
Brain Topogr ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042322

RESUMO

Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique that is portable and acoustically silent, has become a promising tool for evaluating auditory brain functions in hearing-vulnerable individuals. This study, for the first time, used fNIRS to evaluate neuroplasticity of speech-in-noise processing in older adults. Ten older adults, most of whom had moderate-to-mild hearing loss, participated in a 4-week speech-in-noise training. Their speech-in-noise performances and fNIRS brain responses to speech (auditory sentences in noise), non-speech (spectrally-rotated speech in noise) and visual (flashing chequerboards) stimuli were evaluated pre- (T0) and post-training (immediately after training, T1; and after a 4-week retention, T2). Behaviourally, speech-in-noise performances were improved after retention (T2 vs. T0) but not immediately after training (T1 vs. T0). Neurally, we intriguingly found brain responses to speech vs. non-speech decreased significantly in the left auditory cortex after retention (T2 vs. T0 and T2 vs. T1) for which we interpret as suppressed processing of background noise during speech listening alongside the significant behavioural improvements. Meanwhile, functional connectivity within and between multiple regions of temporal, parietal and frontal lobes was significantly enhanced in the speech condition after retention (T2 vs. T0). We also found neural changes before the emergence of significant behavioural improvements. Compared to pre-training, responses to speech vs. non-speech in the left frontal/prefrontal cortex were decreased significantly both immediately after training (T1 vs. T0) and retention (T2 vs. T0), reflecting possible alleviation of listening efforts. Finally, connectivity was significantly decreased between auditory and higher-level non-auditory (parietal and frontal) cortices in response to visual stimuli immediately after training (T1 vs. T0), indicating decreased cross-modal takeover of speech-related regions during visual processing. The results thus showed that neuroplasticity can be observed not only at the same time with, but also before, behavioural changes in speech-in-noise perception. To our knowledge, this is the first fNIRS study to evaluate speech-based auditory neuroplasticity in older adults. It thus provides important implications for current research by illustrating the promises of detecting neuroplasticity using fNIRS in hearing-vulnerable individuals.

3.
Hum Brain Mapp ; 44(17): 6149-6172, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818940

RESUMO

The brain tracks and encodes multi-level speech features during spoken language processing. It is evident that this speech tracking is dominant at low frequencies (<8 Hz) including delta and theta bands. Recent research has demonstrated distinctions between delta- and theta-band tracking but has not elucidated how they differentially encode speech across linguistic levels. Here, we hypothesised that delta-band tracking encodes prediction errors (enhanced processing of unexpected features) while theta-band tracking encodes neural sharpening (enhanced processing of expected features) when people perceive speech with different linguistic contents. EEG responses were recorded when normal-hearing participants attended to continuous auditory stimuli that contained different phonological/morphological and semantic contents: (1) real-words, (2) pseudo-words and (3) time-reversed speech. We employed multivariate temporal response functions to measure EEG reconstruction accuracies in response to acoustic (spectrogram), phonetic and phonemic features with the partialling procedure that singles out unique contributions of individual features. We found higher delta-band accuracies for pseudo-words than real-words and time-reversed speech, especially during encoding of phonetic features. Notably, individual time-lag analyses showed that significantly higher accuracies for pseudo-words than real-words started at early processing stages for phonetic encoding (<100 ms post-feature) and later stages for acoustic and phonemic encoding (>200 and 400 ms post-feature, respectively). Theta-band accuracies, on the other hand, were higher when stimuli had richer linguistic content (real-words > pseudo-words > time-reversed speech). Such effects also started at early stages (<100 ms post-feature) during encoding of all individual features or when all features were combined. We argue these results indicate that delta-band tracking may play a role in predictive coding leading to greater tracking of pseudo-words due to the presence of unexpected/unpredicted semantic information, while theta-band tracking encodes sharpened signals caused by more expected phonological/morphological and semantic contents. Early presence of these effects reflects rapid computations of sharpening and prediction errors. Moreover, by measuring changes in EEG alpha power, we did not find evidence that the observed effects can be solitarily explained by attentional demands or listening efforts. Finally, we used directed information analyses to illustrate feedforward and feedback information transfers between prediction errors and sharpening across linguistic levels, showcasing how our results fit with the hierarchical Predictive Coding framework. Together, we suggest the distinct roles of delta and theta neural tracking for sharpening and predictive coding of multi-level speech features during spoken language processing.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Eletroencefalografia/métodos , Estimulação Acústica/métodos , Percepção da Fala/fisiologia , Córtex Auditivo/fisiologia
4.
Cereb Cortex ; 32(7): 1437-1454, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34424956

RESUMO

Speech-evoked envelope-following response (EFR) reflects brain encoding of speech periodicity that serves as a biomarker for pitch and speech perception and various auditory and language disorders. Although EFR is thought to originate from the subcortex, recent research illustrated a right-hemispheric cortical contribution to EFR. However, it is unclear whether this contribution is causal. This study aimed to establish this causality by combining transcranial direct current stimulation (tDCS) and measurement of EFR (pre- and post-tDCS) via scalp-recorded electroencephalography. We applied tDCS over the left and right auditory cortices in right-handed normal-hearing participants and examined whether altering cortical excitability via tDCS causes changes in EFR during monaural listening to speech syllables. We showed significant changes in EFR magnitude when tDCS was applied over the right auditory cortex compared with sham stimulation for the listening ear contralateral to the stimulation site. No such effect was found when tDCS was applied over the left auditory cortex. Crucially, we further observed a hemispheric laterality where aftereffect was significantly greater for tDCS applied over the right than the left auditory cortex in the contralateral ear condition. Our finding thus provides the first evidence that validates the causal relationship between the right auditory cortex and EFR.


Assuntos
Córtex Auditivo , Estimulação Transcraniana por Corrente Contínua , Eletroencefalografia , Mãos , Humanos , Fala
5.
Neuroimage ; 189: 734-744, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703520

RESUMO

Phase-locked responses are vital for auditory perception and they may vary with participants' arousal state and age. Two phase-locked neural responses that reflect fine-grained acoustic properties of speech were examined in the current study: the frequency-following response (FFR) to the speech fundamental frequency (F0), which originates primarily from the auditory brainstem, and the theta-band phase-locked response (θ-PLV) to the speech envelope that originates from the auditory cortices. The ways these responses were affected by arousal in adults across a wide age-range (19-75 years) were examined. Extracts from electroencephalographic (EEG) responses to repeated syllables were classified into either high or low arousal state based on the occurrence of sleep spindles. The magnitudes of both FFRs and θ-PLVs were statistically greater in the high, than in the low, arousal state. The difference in θ-PLV between the two arousal states was significantly associated with sleep spindle density in the young, but not the older, adults. The results show that (1) arousal affects phase-locked processing of speech at cortical/sub-cortical sensory levels; and that (2) there is an interplay between aging and arousal state which indicates that sleep spindles have an age-dependent neuro-regulatory role on cortical processes. The results lay the grounds for studying how cognitive states affect early-stage neural activity in the auditory system across the lifespan.


Assuntos
Envelhecimento/fisiologia , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Sono/fisiologia , Percepção da Fala/fisiologia , Ritmo Teta/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Acoust Soc Am ; 143(3): 1333, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29604686

RESUMO

Speech-in-noise (SPIN) perception involves neural encoding of temporal acoustic cues. Cues include temporal fine structure (TFS) and envelopes that modulate at syllable (Slow-rate ENV) and fundamental frequency (F0-rate ENV) rates. Here the relationship between speech-evoked neural responses to these cues and SPIN perception was investigated in older adults. Theta-band phase-locking values (PLVs) that reflect cortical sensitivity to Slow-rate ENV and peripheral/brainstem frequency-following responses phase-locked to F0-rate ENV (FFRENV_F0) and TFS (FFRTFS) were measured from scalp-electroencephalography responses to a repeated speech syllable in steady-state speech-shaped noise (SpN) and 16-speaker babble noise (BbN). The results showed that (1) SPIN performance and PLVs were significantly higher under SpN than BbN, implying differential cortical encoding may serve as the neural mechanism of SPIN performance that varies as a function of noise types; (2) PLVs and FFRTFS at resolved harmonics were significantly related to good SPIN performance, supporting the importance of phase-locked neural encoding of Slow-rate ENV and TFS of resolved harmonics during SPIN perception; (3) FFRENV_F0 was not associated to SPIN performance until audiometric threshold was controlled for, indicating that hearing loss should be carefully controlled when studying the role of neural encoding of F0-rate ENV. Implications are drawn with respect to fitting auditory prostheses.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Ruído , Percepção da Fala/fisiologia , Idoso , Audiometria , Córtex Auditivo/fisiologia , Eletroencefalografia , Feminino , Auxiliares de Audição , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória
7.
Neuroimage ; 133: 516-528, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26931813

RESUMO

A growing number of studies indicate that multiple ranges of brain oscillations, especially the delta (δ, <4Hz), theta (θ, 4-8Hz), beta (ß, 13-30Hz), and gamma (γ, 30-50Hz) bands, are engaged in speech and language processing. It is not clear, however, how these oscillations relate to functional processing at different linguistic hierarchical levels. Using scalp electroencephalography (EEG), the current study tested the hypothesis that phonological and the higher-level linguistic (semantic/syntactic) organizations during auditory sentence processing are indexed by distinct EEG signatures derived from the δ, θ, ß, and γ oscillations. We analyzed specific EEG signatures while subjects listened to Mandarin speech stimuli in three different conditions in order to dissociate phonological and semantic/syntactic processing: (1) sentences comprising valid disyllabic words assembled in a valid syntactic structure (real-word condition); (2) utterances with morphologically valid syllables, but not constituting valid disyllabic words (pseudo-word condition); and (3) backward versions of the real-word and pseudo-word conditions. We tested four signatures: band power, EEG-acoustic entrainment (EAE), cross-frequency coupling (CFC), and inter-electrode renormalized partial directed coherence (rPDC). The results show significant effects of band power and EAE of δ and θ oscillations for phonological, rather than semantic/syntactic processing, indicating the importance of tracking δ- and θ-rate phonetic patterns during phonological analysis. We also found significant ß-related effects, suggesting tracking of EEG to the acoustic stimulus (high-ß EAE), memory processing (θ-low-ß CFC), and auditory-motor interactions (20-Hz rPDC) during phonological analysis. For semantic/syntactic processing, we obtained a significant effect of γ power, suggesting lexical memory retrieval or processing grammatical word categories. Based on these findings, we confirm that scalp EEG signatures relevant to δ, θ, ß, and γ oscillations can index phonological and semantic/syntactic organizations separately in auditory sentence processing, compatible with the view that phonological and higher-level linguistic processing engage distinct neural networks.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Relógios Biológicos/fisiologia , Ondas Encefálicas/fisiologia , Eletroencefalografia/métodos , Rede Nervosa/fisiologia , Fonética , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Semântica , Sensibilidade e Especificidade , Adulto Jovem
8.
Hear Res ; 427: 108647, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436293

RESUMO

Ageing affects auditory neural phase-locked activities which could increase the challenges experienced during speech-in-noise (SiN) perception by older adults. However, evidence for how ageing affects SiN perception through these phase-locked activities is still lacking. It is also unclear whether influences of ageing on phase-locked activities in response to different acoustic properties have similar or different mechanisms to affect SiN perception. The present study addressed these issues by measuring early-stage phase-locked encoding of speech under quiet and noisy backgrounds (speech-shaped noise (SSN) and multi-talker babbles) in adults across a wide age range (19-75 years old). Participants passively listened to a repeated vowel whilst the frequency-following response (FFR) to fundamental frequency that has primary subcortical sources and cortical phase-locked response to slowly-fluctuating acoustic envelopes were recorded. We studied how these activities are affected by age and age-related hearing loss and how they are related to SiN performances (word recognition in sentences in noise). First, we found that the effects of age and hearing loss differ for the FFR and slow-envelope phase-locking. FFR was significantly decreased with age and high-frequency (≥ 2 kHz) hearing loss but increased with low-frequency (< 2 kHz) hearing loss, whilst the slow-envelope phase-locking was significantly increased with age and hearing loss across frequencies. Second, potential relationships between the types of phase-locked activities and SiN perception performances were also different. We found that the FFR and slow-envelope phase-locking positively corresponded to SiN performance under multi-talker babbles and SSN, respectively. Finally, we investigated how age and hearing loss affected SiN perception through phase-locked activities via mediation analyses. We showed that both types of activities significantly mediated the relation between age/hearing loss and SiN perception but in distinct manners. Specifically, FFR decreased with age and high-frequency hearing loss which in turn contributed to poorer SiN performance but increased with low-frequency hearing loss which in turn contributed to better SiN performance under multi-talker babbles. Slow-envelope phase-locking increased with age and hearing loss which in turn contributed to better SiN performance under both SSN and multi-talker babbles. Taken together, the present study provided evidence for distinct neural mechanisms of early-stage auditory phase-locked encoding of different acoustic properties through which ageing affects SiN perception.


Assuntos
Surdez , Presbiacusia , Percepção da Fala , Humanos , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Fala , Audição/fisiologia , Percepção da Fala/fisiologia , Ruído/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA