Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ChemistryOpen ; : e202400103, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809061

RESUMO

Among the natural tetramic acids with a decalinoyl part, signermycin B is unique because it contains a cis-decalin. In this paper, we demonstrate that the cis-decalin section of signermycin B can be accessed by an anionic oxy-Cope rearrangement. The substrate, a tricyclic dienol was prepared by an intramolecular Diels-Alder reaction of a masked ortho-benzoquinone, generated by oxidation of an α-methoxyphenol in presence of cis-2-hexenol. After a superfluous bromine on the cycloadduct was removed, reaction of the tricyclic ketone with isopropenylmagnesium bromide led to the tricyclic trienol that underwent the oxy-Cope rearrangement to a cis-decalinone. While we could show, that introduction of the 4-ethyl substituent (signermycin B numbering) is possible by enolate alkylation, the 4-epi-isomer was formed.

2.
Neurosci Biobehav Rev ; 157: 105542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215803

RESUMO

Coordinated interactions between the central and autonomic nervous systems are crucial for survival due to the inherent propensity for human behavior to make errors. In our ever-changing environment, when individuals make mistakes, these errors can have life-threatening consequences. In response to errors, specific reactions occur in both brain activity and heart rate to detect and correct errors. Specifically, there are two brain-related indicators of error detection and awareness known as error-related negativity and error positivity. Conversely, error-related cardiac deceleration denotes a momentary slowing of heart rate following an error, signaling an autonomic response. However, what is the connection between the brain and the heart during error processing? In this review, we discuss the functional and neuroanatomical connections between the brain and heart markers of error processing, exploring the experimental conditions in which they covary. Given the current limitations of available data, future research will continue to investigate the neurobiological factors governing the brain-heart interaction, aiming to utilize them as combined markers for assessing cognitive control in healthy and pathological conditions.


Assuntos
Desaceleração , Eletroencefalografia , Humanos , Tempo de Reação/fisiologia , Encéfalo , Sistema Nervoso Autônomo/fisiologia , Desempenho Psicomotor/fisiologia , Potenciais Evocados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA