Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682248

RESUMO

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Assuntos
Estresse do Retículo Endoplasmático , Transdução de Sinais , Trombospondinas/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Trombospondinas/genética
2.
Nature ; 577(7790): 405-409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31775156

RESUMO

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day1,2, despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect3. The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury4,5. Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2+ and CX3CR1+ macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2+ and CX3CR1+ macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


Assuntos
Imunidade Inata , Miócitos Cardíacos/imunologia , Transplante de Células-Tronco , Células-Tronco , Animais , Diferenciação Celular , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/transplante , Rejuvenescimento
3.
Nat Rev Mol Cell Biol ; 14(1): 38-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23258295

RESUMO

The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.


Assuntos
Cardiomegalia/metabolismo , Coração/fisiologia , Animais , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Biossíntese de Proteínas , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Transcrição Gênica
4.
Am J Physiol Heart Circ Physiol ; 326(1): H180-H189, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999644

RESUMO

During select pathological conditions, the heart can hypertrophy and remodel in either a dilated or concentric ventricular geometry, which is associated with lengthening or widening of cardiomyocytes, respectively. The mitogen-activated protein kinase kinase 1 (MEK1) and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway has been implicated in these differential types of growth such that cardiac overexpression of activated MEK1 causes profound concentric hypertrophy and cardiomyocyte thickening, while genetic ablation of the genes encoding ERK1/2 in the mouse heart causes dilation and cardiomyocyte lengthening. However, the mechanisms by which this kinase signaling pathway controls cardiomyocyte directional growth as well as its downstream effectors are poorly understood. To investigate this, we conducted an unbiased phosphoproteomic screen in cultured neonatal rat ventricular myocytes treated with an activated MEK1 adenovirus, the MEK1 inhibitor U0126, or an eGFP adenovirus control. Bioinformatic analysis identified cytoskeletal-related proteins as the largest subset of differentially phosphorylated proteins. Phos-tag and traditional Western blotting were performed to confirm that many cytoskeletal proteins displayed changes in phosphorylation with manipulations in MEK1-ERK1/2 signaling. From this, we hypothesized that the actin cytoskeleton would be changed in vivo in the mouse heart. Indeed, we found that activated MEK1 transgenic mice and gene-deleted mice lacking ERK1/2 protein had enhanced non-sarcomeric actin expression in cardiomyocytes compared with wild-type control hearts. Consistent with these results, cytoplasmic ß- and γ-actin were increased at the subcortical intracellular regions of adult cardiomyocytes. Together, these data suggest that MEK1-ERK1/2 signaling influences the non-sarcomeric cytoskeletal actin network, which may be important for facilitating the growth of cardiomyocytes in length and/or width.NEW & NOTEWORTHY Here, we performed an unbiased analysis of the total phosphoproteome downstream of MEK1-ERK1/2 kinase signaling in cardiomyocytes. Pathway analysis suggested that proteins of the non-sarcomeric cytoskeleton were the most differentially affected. We showed that cytoplasmic ß-actin and γ-actin isoforms, regulated by MEK1-ERK1/2, are localized to the subcortical space at both lateral membranes and intercalated discs of adult cardiomyocytes suggesting how MEK1-ERK1/2 signaling might underlie directional growth of adult cardiomyocytes.


Assuntos
Actinas , Miócitos Cardíacos , Camundongos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Actinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citoesqueleto/metabolismo , Camundongos Transgênicos , Hipertrofia/metabolismo , Hipertrofia/patologia , Proteínas do Citoesqueleto/metabolismo , Células Cultivadas
5.
Nature ; 509(7500): 337-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805242

RESUMO

If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine whether endogenous c-kit(+) cells contribute differentiated cardiomyocytes to the heart during development, with ageing or after injury in adulthood. A complementary DNA encoding either Cre recombinase or a tamoxifen-inducible MerCreMer chimaeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit(+) cells did produce new cardiomyocytes within the heart, although at a percentage of approximately 0.03 or less, and if a preponderance towards cellular fusion is considered, the percentage falls to below approximately 0.008. By contrast, c-kit(+) cells amply generated cardiac endothelial cells. Thus, endogenous c-kit(+) cells can generate cardiomyocytes within the heart, although probably at a functionally insignificant level.


Assuntos
Linhagem da Célula , Traumatismos Cardíacos/patologia , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Envelhecimento/fisiologia , Animais , Diferenciação Celular , Fusão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Coração/crescimento & desenvolvimento , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Tamoxifeno/farmacologia
7.
Circ Res ; 119(2): 249-60, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27225478

RESUMO

RATIONALE: Mitogen-activated protein kinase (MAPK) signaling regulates the growth response of the adult myocardium in response to increased cardiac workload or pathological insults. The dual-specificity phosphatases (DUSPs) are critical effectors, which dephosphorylate the MAPKs to control the basal tone, amplitude, and duration of MAPK signaling. OBJECTIVE: To examine DUSP8 as a regulator of MAPK signaling in the heart and its impact on ventricular and cardiac myocyte growth dynamics. METHODS AND RESULTS: Dusp8 gene-deleted mice and transgenic mice with inducible expression of DUSP8 in the heart were used here to investigate how this MAPK-phosphatase might regulate intracellular signaling and cardiac growth dynamics in vivo. Dusp8 gene-deleted mice were mildly hypercontractile at baseline with a cardiac phenotype of concentric ventricular remodeling, which protected them from progressing towards heart failure in 2 surgery-induced disease models. Cardiac-specific overexpression of DUSP8 produced spontaneous eccentric remodeling and ventricular dilation with heart failure. At the cellular level, adult cardiac myocytes from Dusp8 gene-deleted mice were thicker and shorter, whereas DUSP8 overexpression promoted cardiac myocyte lengthening with a loss of thickness. Mechanistically, activation of extracellular signal-regulated kinases 1/2 were selectively increased in Dusp8 gene-deleted hearts at baseline and following acute pathological stress stimulation, whereas p38 MAPK and c-Jun N-terminal kinases were mostly unaffected. CONCLUSIONS: These results indicate that DUSP8 controls basal and acute stress-induced extracellular signal-regulated kinases 1/2 signaling in adult cardiac myocytes that then alters the length-width growth dynamics of individual cardiac myocytes, which further alters contractility, ventricular remodeling, and disease susceptibility.


Assuntos
Fosfatases de Especificidade Dupla/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Miócitos Cardíacos/fisiologia , Remodelação Ventricular/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ratos
8.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26966179

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Assuntos
Catepsinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Fibras Musculares Esqueléticas/enzimologia , Distrofia Muscular Animal/enzimologia , Distrofia Muscular de Duchenne/enzimologia , Animais , Citoesqueleto/enzimologia , Citoesqueleto/genética , Citoesqueleto/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Necrose , Proteólise , Sarcolema/enzimologia , Sarcolema/genética , Sarcolema/patologia
9.
Circ Res ; 111(6): 761-77, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22935533

RESUMO

The advent of modern mouse genetics has benefited many fields of diseased-based research over the past 20 years, none perhaps more profoundly than cardiac biology. Indeed, the heart is now arguably one of the easiest tissues to genetically manipulate, given the availability of an ever-growing tool chest of molecular reagents/promoters and "facilitator" mouse lines. It is now possible to modify the expression of essentially any gene or partial gene product in the mouse heart at any time, either gain or loss of function. This review is designed as a handbook for the nonmouse geneticist and/or junior investigator to permit the successful manipulation of any gene or RNA product in the heart, while avoiding artifacts. In the present review, guidelines, pitfalls, and limitations are presented so that rigorous and appropriate examination of cardiac genotype-phenotype relationships can be performed. This review uses examples from the field to illustrate the vast spectrum of experimental and design details that must be considered when using genetically modified mouse models to study cardiac biology.


Assuntos
Pesquisa Biomédica/métodos , Modelos Animais de Doenças , Coração/fisiopatologia , Miocárdio/metabolismo , Animais , Guias como Assunto , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/patologia
11.
Circ Res ; 109(2): 141-50, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21597010

RESUMO

RATIONALE: Cardiac myosin-binding protein-C (cMyBP-C) phosphorylation at Ser-273, Ser-282, and Ser-302 regulates myocardial contractility. In vitro and in vivo experiments suggest the nonequivalence of these sites and the potential importance of Ser-282 phosphorylation in modulating the protein's overall phosphorylation and myocardial function. OBJECTIVE: To determine whether complete cMyBP-C phosphorylation is dependent on Ser-282 phosphorylation and to define its role in myocardial function. We hypothesized that Ser-282 regulates Ser-302 phosphorylation and cardiac function during ß-adrenergic stimulation. METHODS AND RESULTS: Using recombinant human C1-M-C2 peptides in vitro, we determined that protein kinase A can phosphorylate Ser-273, Ser-282, and Ser-302. Protein kinase C can also phosphorylate Ser-273 and Ser-302. In contrast, Ca(2+)-calmodulin-activated kinase II targets Ser-302 but can also target Ser-282 at nonphysiological calcium concentrations. Strikingly, Ser-302 phosphorylation by Ca(2+)-calmodulin-activated kinase II was abolished by ablating the ability of Ser-282 to be phosphorylated via alanine substitution. To determine the functional roles of the sites in vivo, three transgenic lines, which expressed cMyBP-C containing either Ser-273-Ala-282-Ser-302 (cMyBP-C(SAS)), Ala-273-Asp-282-Ala-302 (cMyBP-C(ADA)), or Asp-273-Ala-282-Asp-302 (cMyBP-C(DAD)), were generated. Mutant protein was completely substituted for endogenous cMyBP-C by breeding each mouse line into a cMyBP-C null (t/t) background. Serine-to-alanine substitutions were used to ablate the abilities of the residues to be phosphorylated, whereas serine-to-aspartate substitutions were used to mimic the charged state conferred by phosphorylation. Compared to control nontransgenic mice, as well as transgenic mice expressing wild-type cMyBP-C, the transgenic cMyBP-C(SAS(t/t)), cMyBP-C(ADA(t/t)), and cMyBP-C(DAD(t/t)) mice showed no increases in morbidity and mortality and partially rescued the cMyBP-C((t/t)) phenotype. The loss of cMyBP-C phosphorylation at Ser-282 led to an altered ß-adrenergic response. In vivo hemodynamic studies revealed that contractility was unaffected but that cMyBP-C(SAS(t/t)) hearts showed decreased diastolic function at baseline. However, the normal increases in cardiac function (increased contractility/relaxation) as a result of infusion of ß-agonist was significantly decreased in all of the mutants, suggesting that competency for phosphorylation at multiple sites in cMyBP-C is a prerequisite for normal ß-adrenergic responsiveness. CONCLUSIONS: Ser-282 has a unique regulatory role in that its phosphorylation is critical for the subsequent phosphorylation of Ser-302. However, each residue plays a role in regulating the contractile response to ß-agonist stimulation.


Assuntos
Proteínas de Transporte/metabolismo , Coração/fisiologia , Serina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Fosforilação
12.
Circ Res ; 108(2): 176-83, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21127295

RESUMO

RATIONALE: An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, whereas volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. OBJECTIVE: To determine the role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in regulating the cardiac hypertrophic response. METHODS AND RESULTS: Here, we used mice lacking all ERK1/2 protein in the heart (Erk1(-/-) Erk2(fl/fl-Cre)) and mice expressing activated mitogen-activated protein kinase kinase (Mek)1 in the heart to induce ERK1/2 signaling, as well as mechanistic experiments in cultured myocytes to assess cellular growth characteristics associated with this signaling pathway. Although genetic deletion of all ERK1/2 from the mouse heart did not block the cardiac hypertrophic response per se, meaning that the heart still increased in weight with both aging and pathological stress stimulation, it did dramatically alter how the heart grew. For example, adult myocytes from hearts of Erk1(-/-) Erk2(fl/fl-Cre) mice showed preferential eccentric growth (lengthening), whereas myocytes from Mek1 transgenic hearts showed concentric growth (width increase). Isolated adult myocytes acutely inhibited for ERK1/2 signaling by adenoviral gene transfer showed spontaneous lengthening, whereas infection with an activated Mek1 adenovirus promoted constitutive ERK1/2 signaling and increased myocyte thickness. A similar effect was observed in engineered heart tissue under cyclic stretching, where ERK1/2 inhibition led to preferential lengthening. CONCLUSIONS: Taken together, these data demonstrate that the ERK1/2 signaling pathway uniquely regulates the balance between eccentric and concentric growth of the heart.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Células Cultivadas , Hipertrofia , MAP Quinase Quinase 1/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Modelos Animais , Fosforilação , Transdução de Sinais/fisiologia
13.
Circ Res ; 107(5): 659-66, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20616315

RESUMO

RATIONALE: Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that regulates intracellular Ca(2+) release through IP(3) receptors located in the sarco(endo)plasmic reticulum of cardiac myocytes. Many prohypertrophic G protein-coupled receptor (GPCR) signaling events lead to IP(3) liberation, although its importance in transducing the hypertrophic response has not been established in vivo. OBJECTIVE: Here, we generated conditional, heart-specific transgenic mice with both gain- and loss-of-function for IP(3) receptor signaling to examine its hypertrophic growth effects following pathological and physiological stimulation. METHODS AND RESULTS: Overexpression of the mouse type-2 IP(3) receptor (IP(3)R2) in the heart generated mild baseline cardiac hypertrophy at 3 months of age. Isolated myocytes from overexpressing lines showed increased Ca(2+) transients and arrhythmias in response to endothelin-1 stimulation. Although low levels of IP(3)R2 overexpression failed to augment/synergize cardiac hypertrophy following 2 weeks of pressure-overload stimulation, such levels did enhance hypertrophy following 2 weeks of isoproterenol infusion, in response to Galphaq overexpression, and/or in response to exercise stimulation. To inhibit IP(3) signaling in vivo, we generated transgenic mice expressing an IP(3) chelating protein (IP(3)-sponge). IP(3)-sponge transgenic mice abrogated cardiac hypertrophy in response to isoproterenol and angiotensin II infusion but not pressure-overload stimulation. Mechanistically, IP(3)R2-enhanced cardiac hypertrophy following isoproterenol infusion was significantly reduced in the calcineurin-Abeta-null background. CONCLUSION: These results indicate that IP(3)-mediated Ca(2+) release plays a central role in regulating cardiac hypertrophy downstream of GPCR signaling, in part, through a calcineurin-dependent mechanism.


Assuntos
Sinalização do Cálcio , Cardiomegalia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Fatores Etários , Angiotensina II , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Calcineurina/deficiência , Calcineurina/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Endotelina-1 , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Receptores de Inositol 1,4,5-Trifosfato/genética , Isoproterenol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Fenótipo , Esforço Físico
14.
Proc Natl Acad Sci U S A ; 106(45): 19023-8, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19864620

RESUMO

Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the delta-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Canais de Cátion TRPC/metabolismo , Análise de Variância , Animais , Western Blotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Análise em Microsséries , Distrofias Musculares/etiologia , Canais de Cátion TRPC/antagonistas & inibidores , Transgenes/fisiologia
15.
J Biol Chem ; 285(9): 6716-24, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20037164

RESUMO

Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca(2+) following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca(2+) handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca(2+)-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the alpha-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca(2+)-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.


Assuntos
Calcineurina/fisiologia , Coração/crescimento & desenvolvimento , Animais , Arritmias Cardíacas , Calcineurina/deficiência , Calcineurina/genética , Cálcio , Proliferação de Células , Deleção de Genes , Coração/fisiologia , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Subunidades Proteicas
16.
Nat Cell Biol ; 5(7): 633-9, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12819788

RESUMO

Cyclic AMP (cAMP) is produced by activation of Gs protein-coupled receptors and regulates many physiological processes through activation of protein kinase A (PKA). However, a large body of evidence indicates that cAMP also regulates specific cellular functions through PKA-independent pathways. Here, we show that a small GTPase of the Rho family, Rac, is regulated by cAMP in a PKA-independent manner. We also show that Rac activation results from activation of Rap1 through the cAMP guanine nucleotide-exchange factor (GEF) Epac1. Activation of the Gs-coupled serotonin 5-HT(4) receptor initiates this signalling cascade in various cell types. Furthermore, we demonstrate that crosstalk between the Ras and Rho GTPase families is involved in cAMP-dependent processing of amyloid precursor protein (APP), a key protein in Alzheimer's disease. Indeed, Epac1 regulates secretion of the non-amyloidogenic soluble form of APP (sAPPalpha) through Rap1 and Rac. Our data identify an unsuspected connection between two families of small GTPases and imply that Rac can function downstream of cAMP/Epac1/Rap1 in a novel signal transduction secretory pathway.


Assuntos
Doença de Alzheimer/enzimologia , Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/enzimologia , Neurônios/enzimologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/biossíntese , Animais , Células CHO , Córtex Cerebral/fisiopatologia , Cricetinae , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Receptores de Serotonina/metabolismo , Receptores 5-HT4 de Serotonina , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética
17.
Am J Pathol ; 175(5): 1817-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19834057

RESUMO

Mutations in the gene DYSF, which codes for the protein dysferlin, underlie Miyoshi myopathy and limb-girdle muscular dystrophy 2B in humans and produce a slowly progressing skeletal muscle degenerative disease in mice. Dysferlin is a Ca(2+)-sensing, regulatory protein that is involved in membrane repair after injury. To assess the function of dysferlin in healthy and dystrophic skeletal muscle, we generated skeletal muscle-specific transgenic mice with threefold overexpression of this protein. These mice were phenotypically indistinguishable from wild-type, and more importantly, the transgene completely rescued the muscular dystrophy (MD) disease in Dysf-null A/J mice. The dysferlin transgene rescued all histopathology and macrophage infiltration in skeletal muscle of Dysf(-/-) A/J mice, as well as promoted the rapid recovery of muscle function after forced lengthening contractions. These results indicate that MD in A/J mice is autonomous to skeletal muscle and not initiated by any other cell type. However, overexpression of dysferlin did not improve dystrophic symptoms or membrane instability in the dystrophin-glycoprotein complex-lacking Scgd (delta-sarcoglycan) null mouse, indicating that dysferlin functionality is not a limiting factor underlying membrane repair in other models of MD. In summary, the restoration of dysferlin in skeletal muscle fibers is sufficient to rescue the MD in Dysf-deficient mice, although its mild overexpression does not appear to functionally enhance membrane repair in other models of MD.


Assuntos
Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofias Musculares/genética , Animais , Disferlina , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
18.
Nat Commun ; 10(1): 76, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622267

RESUMO

Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7ß1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability.


Assuntos
Cardiomiopatias/patologia , Integrinas/metabolismo , Sarcolema/patologia , Trombospondinas/metabolismo , Animais , Células COS , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Distroglicanas/metabolismo , Ecocardiografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos Cardíacos , Cultura Primária de Células , Domínios e Motivos de Interação entre Proteínas/genética , Ratos , Ratos Sprague-Dawley , Sarcolema/metabolismo , Trombospondinas/genética
19.
Circ Res ; 98(6): 837-45, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16514068

RESUMO

The transcription factor GATA4 is a critical regulator of cardiac gene expression where it controls embryonic development, cardiomyocyte differentiation, and stress responsiveness of the adult heart. Traditional deletion of Gata4 caused embryonic lethality associated with endoderm defects and cardiac malformations, precluding an analysis of the role of GATA4 in the adult myocardium. To address the function of GATA4 in the adult heart, Gata4-loxP-targeted mice (Gata4fl/fl) were crossed with mice containing a beta-myosin heavy chain (beta-MHC) or alpha-MHC promoter-driven Cre transgene, which produced viable mice that survived into adulthood despite a 95% and 70% loss of GATA4 protein, respectively. However, cardiac-specific deletion of Gata4 resulted in a progressive and dosage-dependent deterioration in cardiac function and dilation in adulthood. Moreover, pressure overload stimulation induced rapid decompensation and heart failure in cardiac-specific Gata4-deleted mice. More provocatively, Gata4-deleted mice were compromised in their ability to hypertrophy following pressure overload or exercise stimulation. Mechanistically, cardiac-specific deletion of Gata4 increased cardiomyocyte TUNEL at baseline in embryos and adults as they aged, as well as dramatically increased TUNEL following pressure overload stimulation. Examination of gene expression profiles in the heart revealed a number of profound alterations in known GATA4-regulated structural genes as well as genes with apoptotic implications. Thus, GATA4 is a necessary regulator of cardiac gene expression, hypertrophy, stress-compensation, and myocyte viability.


Assuntos
Cardiomegalia/etiologia , Fator de Transcrição GATA4/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Apoptose , Fator Natriurético Atrial/genética , Sobrevivência Celular , Fator de Transcrição GATA4/genética , Deleção de Genes , Regulação da Expressão Gênica , Camundongos , Cadeias Pesadas de Miosina/genética
20.
Circ Genom Precis Med ; 11(3): e001901, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29540468

RESUMO

BACKGROUND: Inhibition of PKC-α (protein kinase C-α) enhances contractility and cardioprotection in animal models, but effects in humans are unknown. Genotypes at rs9912468 strongly associate with PRKCA expression in the left ventricle, enabling genetic approaches to measure effects of reduced PKC-α in human populations. METHODS AND RESULTS: We analyzed the cis expression quantitative trait locus for PRKCA marked by rs9912468 using 313 left ventricular specimens from European Ancestry patients. The forward strand minor allele (G) at rs9912468 is associated with reduced PKC-α transcript abundance (1.7-fold reduction in minor allele homozygotes, P=1×10-41). This association was cardiac specific in expression quantitative trait locus data sets that span 16 human tissues. Cardiac epigenomic data revealed a predicted enhancer in complete (R2=1.0) linkage disequilibrium with rs9912468 within intron 2 of PRKCA. We cloned this region and used reporter constructs to verify cardiac-specific enhancer activity in vitro in cardiac and noncardiac cells and in vivo in zebrafish. The PRKCA enhancer contains 2 common genetic variants and 4 haplotypes; the haplotype correlated with the rs9912468 PKC-α-lowering allele (G) showed lowest activity. In contrast to previous reports in animal models, the PKC-α-lowering allele is associated with adverse left ventricular remodeling (higher mass, larger diastolic dimension), reduced fractional shortening, and higher risk of dilated cardiomyopathy in human populations. CONCLUSIONS: These findings support PKC-α as a regulator of the human heart but suggest that PKC-α inhibition may adversely affect the left ventricle depending on timing and duration. Pharmacological studies in human subjects are required to discern potential benefits and harms of PKC-α inhibitors as an approach to treat heart disease.


Assuntos
Ventrículos do Coração/metabolismo , Proteína Quinase C-alfa/genética , Remodelação Ventricular/genética , Adulto , Idoso , Alelos , Animais , Feminino , Genes Reporter , Predisposição Genética para Doença , Genótipo , Haplótipos , Homozigoto , Humanos , Íntrons , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Proteína Quinase C-alfa/metabolismo , Locos de Características Quantitativas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA