RESUMO
Fibrosis is a chronic pathology resulting from excessive deposition of extracellular matrix components that leads to the loss of tissue function. Pulmonary fibrosis can follow a variety of diverse insults including ischemia, respiratory infection, or exposure to ionizing radiation. Consequently, treatments that attenuate the development of debilitating fibrosis are in desperate need across a range of conditions. Sphingolipid metabolism is a critical regulator of cell proliferation, apoptosis, autophagy, and pathologic inflammation, processes that are all involved in fibrosis. Opaganib (formerly ABC294640) is the first-in-class investigational drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Opaganib inhibits key enzymes in sphingolipid metabolism, including sphingosine kinase-2 and dihydroceramide desaturase, thereby reducing inflammation and promoting autophagy. Herein, we demonstrate in mouse models of lung damage following exposure to ionizing radiation that opaganib significantly improved long-term survival associated with reduced lung fibrosis, suppression of granulocyte infiltration, and reduced expression of IL-6 and TNFα at 180 days after radiation. These data further demonstrate that sphingolipid metabolism is a critical regulator of fibrogenesis, and specifically show that opaganib suppresses radiation-induced pulmonary inflammation and fibrosis. Because opaganib has demonstrated an excellent safety profile during clinical testing in other diseases (cancer and COVID-19), the present studies support additional clinical trials with this drug in patients at risk for pulmonary fibrosis.
Assuntos
Adamantano/análogos & derivados , Contramedidas Médicas , Neoplasias , Pneumonia , Fibrose Pulmonar , Piridinas , Camundongos , Animais , Humanos , Esfingolipídeos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Fibrose , Inflamação/tratamento farmacológicoRESUMO
Multiple myeloma (MM) remains an incurable disease and there is an unmet medical need for novel therapeutic drugs that do not share similar mechanisms of action with currently available agents. Sphingosine kinase 2 (SK2) is an innovative molecular target for anticancer therapy. We previously reported that treatment with SK2 inhibitor opaganib inhibited myeloma tumor growth in vitro and in vivo in a mouse xenograft model. In the current study, we performed a phase I study of opaganib in patients with relapsed/refractory multiple myeloma (RRMM). Thirteen patients with RRMM previously treated with immunomodulatory agents and proteasome inhibitors were enrolled and treated with single-agent opaganib at three oral dosing regimens (250 mg BID, 500 mg BID, or 750 mg BID, 28 days as a cycle). Safety and maximal tolerated dose (MTD) were determined. Pharmacokinetics, pharmacodynamics, and correlative studies were also performed. Opaganib was well tolerated up to a dose of 750 mg BID. The most common possibly related adverse event (AE) was decreased neutrophil counts. There were no serious AEs considered to be related to opaganib. MTD was determined as at least 750 mg BID. On an intent-to-treat basis, one patient (7.7%) in the 500 mg BID dose cohort showed a very good partial response, and one other patient (7.7%) achieved stable disease for 3 months. SK2 is an innovative molecular target for antimyeloma therapy. The first-in-class SK2 inhibitor opaganib is generally safe for administration to RRMM patients, and has potential therapeutic activity in these patients. Clinicaltrials.gov: NCT02757326.
Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , DexametasonaRESUMO
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Lewis , Melanoma Experimental , Humanos , Animais , Camundongos , Morte Celular Imunogênica , Antineoplásicos/uso terapêutico , Piridinas , Melanoma Experimental/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.
Assuntos
Cisplatino , Neoplasias , Humanos , Camundongos , Animais , Camundongos Nus , Camundongos Endogâmicos C57BL , Linhagem Celular TumoralRESUMO
Glycogen synthase kinase-3s (GSK3α and GSK3ß) are constitutively active protein kinases that target over 100 substrates, incorporate into numerous protein complexes, and regulate such vital cellular functions as proliferation, apoptosis, and inflammation. Cyclin-dependent kinase 9 (CDK9) regulates RNA production as a component of positive transcription elongation factor b and promotes expression of oncogenic and inflammatory genes. Simultaneous inhibition of these signaling nodes is a promising approach for drug discovery, although previous compounds exhibit limited selectivity and clinical efficacy. The novel diaminothiazole ABC1183 is a selective GSK3α/ß and CDK9 inhibitor and is growth-inhibitory against a broad panel of cancer cell lines. ABC1183 treatment decreases cell survival through G2/M arrest and modulates oncogenic signaling through changes in GSK3, glycogen synthase, and ß-catenin phosphorylation and MCL1 expression. Oral administration, which demonstrates no organ or hematologic toxicity, suppresses tumor growth and inflammation-driven gastrointestinal disease symptoms, owing in part to downregulation of tumor necrosis factor α and interleukin-6 proinflammatory cytokines. Therefore, ABC1183 is strategically poised to effectively mitigate multiple clinically relevant diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Nitrilas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.
RESUMO
Introduction: Acute kidney injury (AKI) is a common multifactorial adverse effect of surgery, circulatory obstruction, sepsis or drug/toxin exposure that often results in morbidity and mortality. Sphingolipid metabolism is a critical regulator of cell survival and pathologic inflammation processes involved in AKI. Opaganib (also known as ABC294640) is a first-in-class experimental drug targeting sphingolipid metabolism that reduces the production and activity of inflammatory cytokines and, therefore, may be effective to prevent and treat AKI. Methods: Murine models of AKI were used to assess the in vivo efficacy of opaganib including ischemia-reperfusion (IR) injury induced by either transient bilateral occlusion of renal blood flow (a moderate model) or nephrectomy followed immediately by occlusion of the contralateral kidney (a severe model) and lipopolysaccharide (LPS)-induced sepsis. Biochemical and histologic assays were used to quantify the effects of oral opaganib treatment on renal damage in these models. Results: Opaganib suppressed the elevations of creatinine and blood urea nitrogen (BUN), as well as granulocyte infiltration into the kidneys, of mice that experienced moderate IR from transient bilateral ligation. Opaganib also markedly decreased these parameters and completely prevented mortality in the severe renal IR model. Additionally, opaganib blunted the elevations of BUN, creatinine and inflammatory cytokines following exposure to LPS. Conclusion: The data support the hypotheses that sphingolipid metabolism is a key mediator of renal inflammatory damage following IR injury and sepsis, and that this can be suppressed by opaganib. Because opaganib has already undergone clinical testing in other diseases (cancer and Covid-19), the present studies support conducting clinical trials with this drug with surgical or septic patients at risk for AKI.
RESUMO
The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19 demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.
Assuntos
Tratamento Farmacológico da COVID-19 , Adamantano/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , Piridinas , SARS-CoV-2 , EsfingolipídeosRESUMO
BACKGROUND/AIMS: Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation and chondrocyte apoptosis, which may involve aberrant sphingolipid metabolism. ABC294640 is a compound that selectively inhibits sphingosine kinase-2, a key enzyme in the sphingolipid pathway. Our goal was to assess the pharmacological effects of ABC294640 in the monosodium iodoacetate (MIA) model of OA. METHODS: MIA (3 mg) was injected into the right knee joint to induce osteoarthritis in rats. Subsequently, the rats were treated with vehicle, ABC294640 or tramadol over a 28-day period. To assess pain, incapacitance readings were obtained weekly. MIA-injected knee joints were evaluated for histological damage, cartilage degradation and chondrocyte apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling histochemistry). RESULTS: The percent weight bearing in vehicle/MIA rats significantly (p < 0.01) decreased from 48.8 ±0.8 (day 0) to 41.9 ±2.9 (day 28). In contrast, these values in ABC294640-treated rats were virtually the same on days 0 and 28. Knee joint histology scores were less severe in ABC294640-treated rats. Cartilage proteoglycan staining was more prominent in ABC294640/MIA animals than in vehicle/MIA rats. The percentage of apoptotic chondrocytes was decreased from 39.5% (vehicle treatment) to 25.8% (ABC294640 treatment). CONCLUSION: ABC294640 attenuated the knee joint histological damage and pain associated with MIA-induced OA in rats.
Assuntos
Adamantano/análogos & derivados , Osteoartrite/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/uso terapêutico , Adamantano/administração & dosagem , Adamantano/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Modelos Animais de Doenças , Iodoacetatos/farmacologia , Masculino , Osteoartrite/enzimologia , Osteoartrite/patologia , Dor/prevenção & controle , Medição da Dor , Piridinas/administração & dosagem , Ratos , Ratos WistarRESUMO
UNLABELLED: Pro-inflammatory cytokines like TNF-α activate sphingosine kinase (SK). Therefore, inhibition of SK is a potential molecular target for the treatment of rheumatoid arthritis. AIMS: The primary goal of this study was to assess the efficacy of ABC249640 (a selective SK-2 inhibitor) in two models of rodent arthritis. A secondary goal was to evaluate the pharmacological profile of ABC294640, when given in combination with methotrexate. METHODS: The efficacy of ABC294640 was determined by paw diameter/volume measurements, histological evaluations, and micro-CT analyses. RESULTS: ABC294640 attenuated both collagen-induced arthritis in mice, as well as adjuvant-induced arthritis in rats. With the adjuvant arthritis model, the prophylactic efficacy profile of ABC294640 was similar to indomethacin. Of note, ABC294640 reduced the bone and cartilage degradation, associated with adjuvant-induced arthritis. Rats treated with a suboptimal dose of MTX (50 µg/kg/day) in combination with ABC249640 (100 mg/kg/day) had better anti-arthritis effects in the adjuvant model, than treatment with either agent alone. CONCLUSION: Our results suggest that ABC249640 is an orally available drug candidate with a good pre-clinical efficacy profile for the prevention and/or treatment of RA.
Assuntos
Adamantano/análogos & derivados , Artrite Experimental/tratamento farmacológico , Artrite Experimental/prevenção & controle , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Adamantano/administração & dosagem , Adamantano/farmacologia , Adamantano/uso terapêutico , Administração Oral , Animais , Tornozelo/patologia , Articulação do Tornozelo/efeitos dos fármacos , Articulação do Tornozelo/patologia , Artrite Experimental/patologia , Peso Corporal/efeitos dos fármacos , Quimioterapia Combinada , Edema/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Pé/patologia , Indometacina/administração & dosagem , Indometacina/farmacologia , Indometacina/uso terapêutico , Inflamação/patologia , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Camundongos , Camundongos Endogâmicos DBA , Piridinas/farmacologia , Ratos , Ratos Endogâmicos Lew , Esplenomegalia/induzido quimicamente , Esplenomegalia/tratamento farmacológico , Esplenomegalia/patologia , Esplenomegalia/prevenção & controle , Microtomografia por Raio-XRESUMO
Sphingolipid-metabolizing enzymes control the dynamic balance of the cellular levels of important bioactive lipids, including the apoptotic compound ceramide and the proliferative compound sphingosine 1-phosphate (S1P). Many growth factors and inflammatory cytokines promote the cleavage of sphingomyelin and ceramide leading to rapid elevation of S1P levels through the action of sphingosine kinases (SK1 and SK2). SK1 and SK2 are overexpressed in a variety of human cancers, making these enzymes potential molecular targets for cancer therapy. We have identified an aryladamantane compound, termed ABC294640 [3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide], that selectively inhibits SK2 activity in vitro, acting as a competitive inhibitor with respect to sphingosine with a K(i) of 9.8 muM, and attenuates S1P formation in intact cells. In tissue culture, ABC294640 suppresses the proliferation of a broad panel of tumor cell lines, and inhibits tumor cell migration concomitant with loss of microfilaments. In vivo, ABC294640 has excellent oral bioavailability, and demonstrates a plasma clearance half-time of 4.5 h in mice. Acute and chronic toxicology studies indicate that ABC294640 induces a transient minor decrease in the hematocrit of rats and mice; however, this normalizes by 28 days of treatment. No other changes in hematology parameters, or gross or microscopic tissue pathology, result from treatment with ABC294640. Oral administration of ABC294640 to mice bearing mammary adenocarcinoma xenografts results in dose-dependent antitumor activity associated with depletion of S1P levels in the tumors and progressive tumor cell apoptosis. Therefore, this newly developed SK2 inhibitor provides an orally available drug candidate for the treatment of cancer and other diseases.
Assuntos
Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/farmacologia , Adamantano/farmacocinética , Adamantano/farmacologia , Adamantano/uso terapêutico , Administração Oral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Piridinas/farmacocinética , Piridinas/uso terapêutico , Ratos , Ratos Sprague-DawleyRESUMO
AIM: Activation of sphingosine kinase (SK) is a key response to many inflammatory processes. The present studies test the hypothesis that an orally available SK inhibitor, ABC294640, would be effective in rodent models of Crohn's disease. METHODS: Trinitrobenzene sulfonic acid (TNBS) was administered rectally to mice and rats. Rats were treated with ABC294640 orally alone or in combination with olsalazine and disease progression was monitored. RESULTS: For both rodent species, treatment with ABC294640 attenuated disease progression. Colon samples from the ABC294640-treated animals had improved histology and cytokine parameters when compared with vehicle-treated animals. The expression of SK was similarly increased in TNBS-treated animals and in human colon tissue specimens from inflammatory bowel disease patients relative to normal, control patients. CONCLUSIONS: Sphingosine kinase may be a critical mediator of colonic damage during intestinal inflammation, and pharmacologic inhibitors of this enzyme may prove useful in the treatment of Crohn's disease.
Assuntos
Doença de Crohn/induzido quimicamente , Doença de Crohn/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Adamantano/administração & dosagem , Adamantano/análogos & derivados , Adamantano/farmacologia , Adamantano/uso terapêutico , Ácidos Aminossalicílicos/administração & dosagem , Ácidos Aminossalicílicos/farmacologia , Ácidos Aminossalicílicos/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/enzimologia , Colo/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Inibidores Enzimáticos/farmacologia , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Humanos , Interleucina-1beta/metabolismo , Leucócitos/enzimologia , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/patologia , Peroxidase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Prednisolona/administração & dosagem , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Piridinas/administração & dosagem , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Ácido Trinitrobenzenossulfônico/administração & dosagem , Ácido Trinitrobenzenossulfônico/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
We examined the in vitro and in vivo effects of a probiotic, Escherichia coli strain M-17 (EC-M17), on NF-kappaB signalling, cytokine secretion and efficacy in dextran sulfate sodium (DSS)-induced murine colitis. NF-kappaB signalling was assessed using an NF-kappaB luciferase reporter cell line that was stimulated with TNF-alpha (100 ng/ml). p65 Nuclear binding and cytokine secretion (TNF-alpha, IL-1beta and IL-6) were evaluated using a RAW 264.7 macrophage cell line that was exposed to lipopolysaccharide (LPS; 5 microg/ml). Mice were administered vehicle, EC-M17, metronidazole, or EC-M17 plus metronidazole for 13 d. During the final 6 d, mice also received 2 % DSS. Parameters evaluated included disease activity index (DAI), histology, myeloperoxidase and NF-kappaB p65. EC-M17 dose dependently inhibited TNF-alpha-induced NF-kappaB signalling. At 5 x 109 colony-forming units/ml, EC-M17 inhibited NF-kappaB by >95 %. LPS-induced nuclear p65 binding was significantly inhibited (78 %; P 90 %) the LPS-induced secretion of TNF-alpha, IL-1beta and IL-6. In mice with DSS-induced colitis, EC-M17, metronidazole, and EC-M17 plus metronidazole significantly reduced DAI and colonic histology scores. Both EC-M17 and metronidazole reduced colonic IL-12, IL-6, IL-1beta and interferon-gamma. The combination of EC-M17 plus metronidazole resulted in more substantial cytokine reductions than were found with either treatment alone, and combination therapy significantly (P < 0.05 in both cases) reduced IL-1beta compared with EC-M17 and colonic histology scores compared with metronidazole. Alone, and in combination with metronidazole, EC-M17 improved murine colitis, probably due to an inhibitory effect on NF-kappaB signalling.
Assuntos
Colite/imunologia , Colo/imunologia , Escherichia coli/fisiologia , Probióticos , Animais , Anti-Infecciosos/uso terapêutico , Linhagem Celular , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Humanos , Interleucina-1beta/análise , Interleucina-6/análise , Luciferases/análise , Macrófagos/imunologia , Masculino , Metronidazol/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Peroxidase/análise , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/análise , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/análiseRESUMO
Purpose: Sphingosine kinases (SK1 and SK2) regulate tumor growth by generating the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). This phase I study investigated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of ABC294640, a first-in-class orally available inhibitor of SK2.Experimental Design: Escalating doses of ABC294640 were administered orally to patients with advanced solid tumors in sequential cohorts at the following dose levels: 250 mg qd, 250 mg bid, 500 mg bid, and 750 mg bid, continuously in cycles of 28 days. Serial blood samples were obtained to measure ABC294640 concentrations and sphingolipid profiles.Results: Twenty-two patients were enrolled, and 21 received ABC294640. The most common drug-related toxicities were nausea, vomiting, and fatigue. Among the 4 patients at 750 mg bid, one had dose-limiting grade 3 nausea and vomiting, and 2 were unable to complete cycle 1 due to diverse drug-related toxicities. The 500 mg bid dose level was established as the recommended phase II dose. ABC294640 administration resulted in decreases in S1P levels over the first 12 hours, with return to baseline at 24 hours. The best response was a partial response in a patient with cholangiocarcinoma at 250 mg qd, and stable disease was observed in 6 patients with various solid tumors across dose levels.Conclusions: At 500 mg bid, ABC294640 is well tolerated and achieves biologically relevant plasma concentrations. Changes in plasma sphingolipid levels may provide a useful pharmacodynamic biomarker for ABC294640. Clin Cancer Res; 23(16); 4642-50. ©2017 AACR.
Assuntos
Adamantano/análogos & derivados , Neoplasias/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/uso terapêutico , Adamantano/efeitos adversos , Adamantano/uso terapêutico , Adulto , Idoso , Relação Dose-Resposta a Droga , Fadiga/induzido quimicamente , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piridinas/efeitos adversos , Resultado do Tratamento , Vômito/induzido quimicamente , Adulto JovemRESUMO
PURPOSE: The increased vascular permeability and pathogenic angiogenesis observed in diabetic retinopathy are induced, at least in part, by local inflammation and vascular endothelial growth factor (VEGF). Therefore, inhibition of signaling from VEGF and tumor necrosis factor-alpha (TNFalpha) is a promising approach to the treatment of this disease, as well as ocular diseases with similar etiologies, including age-related macular degeneration. A growing body of evidence demonstrates that sphingosine kinase (SK) plays an important role in cellular proliferation and angiogenesis. This study was undertaken to examine the effects of SK inhibitors on the responses of retinal endothelial cells (RECs) to VEGF and TNFalpha and their therapeutic efficacy in a diabetic retinopathy model. METHODS: The expression and function of SK in bovine and human RECs were examined by immunoblot analysis. The involvement of SK in mediating responses to VEGF and TNFalpha was examined by using pharmacologic inhibitors of SK in cellular and in vivo assays, including a 3-month streptozotocin-induced diabetic retinopathy model in rats. RESULTS: SK was present and active in human and bovine RECs, and SK activity in these cells was stimulated by VEGF. Inhibitors of SK blocked VEGF-induced production of sphingosine 1-phosphate and markedly attenuated VEGF-induced proliferation and migration of RECs. In addition, SK inhibitors were shown to block TNFalpha-induced expression of adhesion proteins, suppress VEGF-induced vascular leakage in an in vivo mouse model, and reduce retinal vascular leakage in the rat diabetic retinopathy model. CONCLUSIONS: Overall, these studies demonstrate that inhibitors of SK attenuate the effects of proliferative and inflammatory stimuli on RECs both in vitro and in vivo, and so could be significant therapeutics in the treatment of diabetic retinopathy.
Assuntos
Retinopatia Diabética/enzimologia , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/citologia , Animais , Western Blotting , Permeabilidade Capilar , Bovinos , Técnicas de Cultura de Células , Proliferação de Células , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Humanos , Masculino , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
Expression of the drug transport proteins, including P-glycoprotein (Pgp), in the brain vascular endothelium represents a challenge for the effective delivery of drugs for the treatment of several central nervous system (CNS) disorders including depression, schizophrenia and epilepsy. It has been hypothesized that Pgp plays a major role in drug efflux at the blood-brain barrier, and may be an underlying factor in the variable responses of patients to CNS drugs. However, the role of Pgp in the transport of many CNS drugs has not been directly demonstrated. To explore the role of Pgp in drug transport across an endothelial cell barrier derived from the central nervous system, the expression and activity of Pgp in bovine retinal endothelial cells (BRECs) and the effects of representative CNS drugs on Pgp activity were examined. Significant Pgp expression in BRECs was demonstrated by western analyses, and expression was increased by treatment of the cells with hydrocortisone. Intracellular accumulation of the well-characterized Pgp-substrate Taxol was markedly increased by the non-selective transporter inhibitor verapamil and the Pgp-selective antagonist PGP-4008, demonstrating that Pgp is active in these endothelial cells. In contrast, neither verapamil nor PGP-4008 affected the intracellular accumulation of [3H]paroxetine, [14C]phenytoin, [3H]clozapine or [14C]carbamazapine, indicating that these drugs are not substrates for Pgp. Paroxetine, clozapine and phenytoin were shown to be Pgp inhibitors, while carbamazapine did not inhibit Pgp at any concentration tested. These results indicate that Pgp is not likely to modulate patient responses to these drugs.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Anticonvulsivantes/metabolismo , Antipsicóticos/metabolismo , Carbamazepina/metabolismo , Clozapina/metabolismo , Células Endoteliais/metabolismo , Paroxetina/metabolismo , Fenitoína/metabolismo , Retina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Animais , Anti-Inflamatórios/farmacologia , Western Blotting , Bovinos , Separação Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Hidrocortisona/farmacologia , Paroxetina/farmacologia , Ratos , Retina/citologiaRESUMO
Sphingosine 1-phosphate (S1P), a lysosphingolipid associated with high-density lipoprotein (HDL), contributes to the anti-atherogenic potential attributed to this lipoprotein. This study examined whether a reduction of S1P plasma levels affects atherosclerosis in a murine model of disease. LDL-R(-/-)mice on Western diet were given ABC294640, an inhibitor of sphingosine kinase (SphK) for 16 weeks. ABC294640 decreased plasma S1P by approximately 30%. However, ABC294640 failed to affect atherosclerotic lesion formation. Plasma triglycerides were reduced whereas total and HDL-cholesterol remained unchanged in course of ABC294640 treatment. ABC294640 increased plasma interleukin (IL)-12p70 and RANTES concentration as well as IL-12p70, RANTES and interferon (IFN)-γ production by peritoneal cells and this was paralleled by enhanced activity of peritoneal and spleen dendritic cells as evidenced by up-regulation of CD86 and MHC-II on CD11c(+) cells. As a consequence, increased T-cell activation was noted in ABC294640-treated mice as indicated by enhanced CD4(+) splenocyte proliferation, IFN-γ and IL-2 production, and CD69 expression. Concomitantly, however, ABC294640 treatment redistributed CD4(+) and CD8(+) cells from blood to lymphatic organs and reduced T-cell number within atherosclerotic lesions. In addition, plasma sVCAM-1, sICAM-1, and MCP-1 levels as well as in vivo leukocyte adhesion and CCL19-induced T-cell penetration into peritoneum were lower in ABC294640-treated animals. In vitro experiments demonstrated reduced VCAM-1 and ICAM-1 expression and lymphocyte adhesion to endothelial cells exposed to ABC294640. In conclusion, treatment with SphK inhibitor leads to both pro- and anti-atherogenic effects in LDL-R(-/-) mice. As a consequence, SphK inhibition fails to affect atherosclerosis despite significant S1P reduction in plasma.
Assuntos
Adamantano/análogos & derivados , Aterosclerose/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Piridinas/administração & dosagem , Linfócitos T/efeitos dos fármacos , Adamantano/administração & dosagem , Adamantano/efeitos adversos , Animais , Aterosclerose/sangue , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Progressão da Doença , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inibidores Enzimáticos/efeitos adversos , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Pró-Proteína Convertases/sangue , Piridinas/efeitos adversos , Receptores de LDL/genética , Serina Endopeptidases/sangue , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
A critical step in the mechanism of action of inflammatory cytokines is the stimulation of sphingolipid metabolism, including activation of sphingosine kinase (SK), which produces the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). We have developed orally bioavailable compounds that effectively inhibit SK activity in vitro in intact cells and in cancer models in vivo. In this study, we assessed the effects of these SK inhibitors on cellular responses to tumor necrosis factor alpha (TNFalpha) and evaluated their efficacy in the dextran sulfate sodium (DSS) model of ulcerative colitis in mice. Using several cell systems, it was shown that the SK inhibitors block the ability of TNFalpha to activate nuclear factor kappa B (NFkappaB), induce expression of adhesion proteins, and promote production of prostaglandin E(2) (PGE(2)). In an acute model of DSS-induced ulcerative colitis, SK inhibitors were equivalent to or more effective than Dipentum in reducing disease progression, colon shortening, and neutrophil infiltration into the colon. The effects of SK inhibitors were associated with decreased colonic levels of inflammatory cytokines TNFalpha, interleukin (IL)-1beta, interferon gamma (IFN)-gamma, IL-6, and reduction of S1P levels. A similar reduction in disease progression was provided by SK inhibitors in a chronic model of ulcerative colitis in which the mice received 3-week-long cycles of DSS interspaced with week-long recovery periods. In the chronic model, immunohistochemistry for SK showed increased expression in DSS-treated mice (compared with water-treated controls) that was reduced by drug treatment. S1P levels were also elevated in the DSS group and significantly reduced by drug treatment. Together, these data indicate that SK is a critical component in inflammation and that inhibitors of this enzyme may be useful in treating inflammatory bowel diseases.