Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360883

RESUMO

Understanding the mechanisms of colorectal cancer progression is crucial in the setting of strategies for its prevention. δ-Valerobetaine (δVB) is an emerging dietary metabolite showing cytotoxic activity in colon cancer cells via autophagy and apoptosis. Here, we aimed to deepen current knowledge on the mechanism of δVB-induced colon cancer cell death by investigating the apoptotic cascade in colorectal adenocarcinoma SW480 and SW620 cells and evaluating the molecular players of mitochondrial dysfunction. Results indicated that δVB reduced cell viability in a time-dependent manner, reaching IC50 after 72 h of incubation with δVB 1.5 mM, and caused a G2/M cell cycle arrest with upregulation of cyclin A and cyclin B protein levels. The increased apoptotic cell rate occurred via caspase-3 activation with a concomitant loss in mitochondrial membrane potential and SIRT3 downregulation. Functional studies indicated that δVB activated mitochondrial apoptosis through PINK1/Parkin pathways, as upregulation of PINK1, Parkin, and LC3B protein levels was observed (p < 0.0001). Together, these findings support a critical role of PINK1/Parkin-mediated mitophagy in mitochondrial dysfunction and apoptosis induced by δVB in SW480 and SW620 colon cancer cells.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Suplementos Nutricionais , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Valeratos/farmacologia , Adenocarcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Mol Reprod Dev ; 86(6): 650-660, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30938011

RESUMO

Salinity represents a critical environmental and an ecological factor in the reproduction of marine species. As global climate changes and anthropogenic factors affect salinity, in this study, we have analyzed the responses of Mytilus galloprovincialis spermatozoa to hyposaline stress. We exposed mussels, in laboratory tanks, for 24 hr at 18°C to control (35.9 psu) and three hyposaline (17.1, 22.6, and 26.2 psu) conditions, and evaluated the expression of sperm hsp70 and protamine-like proteins genes. Further we analyzed the electrophoretic pattern, the DNA binding and the release from sperm nuclei of protamine-like proteins. For all experimental approaches used, the results obtained at 17.1 psu condition were very similar to those obtained in the control condition, while alterations were always recorded at 22.6 and 26.2 psu conditions. Particularly, at 22.6 and 26.2 psu, was observed: 42.5- and 17.1-fold increase in hsp70 expression, respectively, and hypoexpression of PL-II/PLIV protamine-like proteins genes. Further, electrophoretic mobility shift assays and salt-induced release of nuclear proteins from sperm nuclei, revealed alterations in the PL proteins/DNA binding, in these two hyposaline conditions. The similarity between the results obtained in control and in the more severe hyposaline condition (17.1 psu) could indicate a phenomenon of fertility preservation strategy due to gamete plasticity.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/biossíntese , Mytilus/metabolismo , Pressão Osmótica , Protaminas/metabolismo , Espermatozoides/metabolismo , Animais , Masculino , Mytilus/citologia , Espermatozoides/citologia
3.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009329

RESUMO

Emerging evidence indicates that defects in sirtuin signaling contribute to impaired glucose and lipid metabolism, resulting in insulin resistance (IR) and endothelial dysfunction. Here, we examined the effects of palmitic acid (PA) treatment on mitochondrial sirtuins (SIRT2, SIRT3, SIRT4, and SIRT5) and oxidative homeostasis in human endothelial cells (TeloHAEC). Results showed that treatment for 48 h with PA (0.5 mM) impaired cell viability, induced loss of insulin signaling, imbalanced the oxidative status (p < 0.001), and caused negative modulation of sirtuin protein and mRNA expression, with a predominant effect on SIRT3 (p < 0.001). Restoration of SIRT3 levels by mimic transfection (SIRT3+) suppressed the PA-induced autophagy (mimic NC+PA) (p < 0.01), inflammation, and pyroptosis (p < 0.01) mediated by the NLRP3/caspase-1 axis. Moreover, the unbalanced endothelial redox state induced by PA was counteracted by the antioxidant δ-valerobetaine (δVB), which was able to upregulate protein and mRNA expression of sirtuins, reduce reactive oxygen species (ROS) accumulation, and decrease cell death. Overall, results support the central role of SIRT3 in maintaining the endothelial redox homeostasis under IR and unveil the potential of the antioxidant δVB in enhancing the defense against IR-related injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA