Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18898, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144640

RESUMO

The paper presents new knowledge on primary defect formation in tungsten (W) and iron (Fe) irradiated by fission and high-energy neutrons at near-room temperature. Using a well-established method of positron-annihilation lifetime-spectroscopy (PALS), it was found that irradiation of W in the fission reactor and by high-energy neutrons from the p(35 MeV)-Be generator leads to the formation of small radiation-induced vacancy clusters with comparable mean size. In the case of Fe, smaller mean size of primary radiation-induced vacancy clusters was measured after irradiation with fission neutrons compared to irradiation with high-energy neutrons from the p(35 MeV)-Be generator. It was found that one of the reasons of the formation of the larger size of the defects with lower density in Fe is lower flux in the case of irradiation with high-energy neutrons from the p(35 MeV)-Be source. The second reason is enhanced defect agglomeration and recombination within the energetic displacement cascade at high energy primary knock-on-atoms (PKAs). This is consistent with the concept of the athermal recombination corrected (arc-dpa) model, although the measured dpa cross-section of both fission neutrons and wide-spectrum high-energy neutrons in W is between the conventional Norgett-Robinson-Torrens (NRT-dpa) and arc-dpa predictions. This means that the physics of the primary radiation effects in materials is still not fully known and requires further study through a combination of modeling and experimental efforts. The present data serve as a basis for the development of an improved concept of the displacement process.

2.
Appl Radiat Isot ; 141: 5-9, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144773

RESUMO

The intensities of γ-rays from the 196m2Au decay adopted in 1998 and 2007 ENSDF evaluations differ up to 20%. Gold samples were irradiated in intensive neutron fluxes with energies up to 35 MeV to produce the isotopes 196Au in all isomeric states. The intensities of gammas from the radioactive decay of the isomer 196m2Au were measured by means of the nuclear γ-ray spectrometry (HPGe detectors) and compared to the existing adopted data.

3.
Radiat Prot Dosimetry ; 180(1-4): 115-119, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177426

RESUMO

The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the 7Li(p,n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.


Assuntos
Deutério/análise , Desenho de Equipamento , Lítio/química , Nêutrons , Aceleradores de Partículas/instrumentação , Prótons , Simulação por Computador , Doses de Radiação
4.
Appl Radiat Isot ; 70(7): 1254-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22204785

RESUMO

For the design and modeling of Accelerator Driven sub-critical System (ADS) a detailed study of response of ADS materials to the spallation neutrons is required. For this purpose reaction rates of different reactions like (n, xn) and (n, xnyp) in 209Bi, natMo, 56Fe, natNi, 55Mn, natTi and natCo materials are determined in an experiment conducted at Nuclotron of JINR, Dubna, using 1.6 GeV d-beam in the 'Energy+Transmutation' set-up. Reaction rates of various (n, xn) and (n, xnyp) reactions are studied in these samples. Results of reaction rates deduced from all the gamma peaks observed in case of 209Bi (n, xn) reactions with x=3-9, natMo (n, γ), (n, 3n), (n, 6n), 56Fe (n, p), (n, p2n), (n, p4n), natNi (n, 2n), (n, 3n), (n, p), (n, d), (n, t), 55Mn (n, γ), (n, 2n), (n, 4n), natTi (n, p), (n, d), (n, t) and natCo (n, γ), (n, xn) reactions with x=2-5 along with (n, p), (n, 2p2n), (n, 2p4n) and (n, 2p6n) are presented. The measured reaction rates for all the elements show good consistency for all the reaction channels and all observed Eγ's of the product nucleus. For all the above mentioned reactions, both experimental as well as theoretical spectrum average cross-sections (σsp.av.cs) are deduced and compared. A close agreement is found between the experimental σsp.av.cs and theoretical σsp.av.cs values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA