Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Public Health ; 16(12): 2046-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944366

RESUMO

BACKGROUND: The pandemic of COVID-19 has created an unprecedented burden on the healthcare system and medical communities resulting in new public health challenges. On the other hand, in tropical countries, another concern arises due to the similar spectrum of clinical manifestations between COVID-19 and dengue fever. Thus, the neglected tropical disease 'Dengue' writhed with more inattention. This study aims to find the effect of the COVID-19 pandemic on dengue infections in endemic areas of West Bengal, India, and their combined impact on public health. The alterations in circulating dengue serotype and their genomic diversity in different COVID-19 waves were also monitored. METHODS: A total of 1782 patients were included in this study. Dengue NS1 ELISA, molecular serotyping, genotyping and their phylogenetic analysis were performed. GISaided analysis of various dengue serotypes and hotspot identification for risk maps of severe dengue in endemic zones were done. The burden of dengue fever and the sustainability of their viral strains with changing meteorological parameters in parallel to COVID-19 waves were analyzed. RESULTS: Co-circulation of all the four dengue serotypes with rapid change in the pattern of prevalent serotype DENV4 (Genotype-I) in the year 2020 and DENV3 (Genotype-III) in 2021 were observed, in parallel to different circulating strains of COVID-19. Spatiotemporal distribution of DENV using Geographic Information System (GIS) applications observed a serotypic shift and hotspot mapping for risk analysis detected Kolkata as a dengue hotspot, which has also reported the maximum number of COVID-19 cases. CONCLUSION: This study indicates the increased fitness of circulating dengue virus strains with optimal virulence as per changing environmental conditions and the inhabitant's immunity. The high infectivity rate of both the RNA viruses and considering.the consequences of severe dengue and COVID-19 in the population of the same geographical settings is an alarming risk.


Assuntos
COVID-19 , Vírus da Dengue , Dengue , Dengue Grave , Humanos , Sorogrupo , Dengue Grave/epidemiologia , Dengue/epidemiologia , Pandemias , Filogenia , Genótipo , Atenção à Saúde , COVID-19/epidemiologia
2.
Microbiol Spectr ; 10(4): e0091422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35852336

RESUMO

The evolution of viral variants and their impact on viral transmission have been an area of considerable importance in this pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed the viral variants in different phases of the pandemic in West Bengal, a state in India that is important geographically, and compared the variants with other states like Delhi, Maharashtra, and Karnataka, located in other regions of the country. We have identified 57 pango-lineages in 3,198 SARS-CoV-2 genomes, alteration in their distribution, as well as contrasting profiles of amino acid mutational dynamics across different waves in different states. The evolving characteristics of Delta (B.1.617.2) sublineages and alterations in hydrophobicity profiles of the viral proteins caused by these mutations were also studied. Additionally, implications of predictive host miRNA binding/unbinding to emerging spike or nucleocapsid mutations were highlighted. Our results throw considerable light on interesting aspects of the viral genomic variation and provide valuable information for improved understanding of wave-defining mutations in unfolding the pandemic. IMPORTANCE Multiple waves of infection were observed in many states in India during the coronavirus disease 2019 (COVID19) pandemic. Fine-scale evolution of major SARS-CoV-2 lineages and sublineages during four wave-window categories: Pre-Wave 1, Wave 1, Pre-Wave 2, and Wave 2 in four major states of India: Delhi (North), Maharashtra (West), Karnataka (South), and West Bengal (East) was studied using large-scale virus genome sequencing data. Our comprehensive analysis reveals contrasting molecular profiles of the wave-defining mutations and their implications in host miRNA binding/unbinding of the lineages in the major states of India.


Assuntos
COVID-19 , MicroRNAs , COVID-19/epidemiologia , Genoma Viral , Humanos , Índia/epidemiologia , Mutação , Pandemias , Filogenia , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA