Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Angew Chem Int Ed Engl ; 60(34): 18694-18703, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009717

RESUMO

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.


Assuntos
Lipoglicopeptídeos/isolamento & purificação , Streptomyces/química , Lipoglicopeptídeos/química , Conformação Molecular
2.
Pharmaceuticals (Basel) ; 16(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37242470

RESUMO

The penetration of substances through the bacterial cell envelope is a complex and underinvestigated process. Mitochondria-targeted antioxidant and antibiotic SkQ1 (10-(plastoquinonyl)decyltriphenylphosphonium) is an excellent model for studying the penetration of substances through the bacterial cell envelope. SkQ1 resistance in Gram-negative bacteria has been found to be dependent on the presence of the AcrAB-TolC pump, while Gram-positive bacteria do not have this pump but, instead, have a mycolic acid-containing cell wall that is a tough barrier against many antibiotics. Here, we report the bactericidal action of SkQ1 and dodecyl triphenylphospho-nium (C12TPP) against Rhodococcus fascians and Mycobacterium tuberculosis, pathogens of plants and humans. The mechanism of the bactericidal action is based on the penetration of SkQ1 and C12TPP through the cell envelope and the disruption of the bioenergetics of bacteria. One, but probably not the only such mechanism is a decrease in membrane potential, which is important for the implementation of many cellular processes. Thus, neither the presence of MDR pumps, nor the presence of porins, prevents the penetration of SkQ1 and C12TPP through the complex cell envelope of R. fascians and M. tuberculosis.

3.
J Immunol ; 184(3): 1227-34, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20028653

RESUMO

Mutations in the btk gene encoding Bruton's tyrosine kinase cause X-linked immune deficiency, with impaired B lymphocyte function as the major phenotype. Earlier, we demonstrated that CBA/N-xid mice, unlike the wild-type CBA mice, were not protected by bacillus Calmette-Guérin (BCG) vaccination against tuberculosis infection. Because IFN-gamma-producing T cells and activated macrophages are key elements of antituberculosis protection, it remained unclear how the mutation predominantly affecting B cell functions interferes with responses along the T cell-macrophage axis. In this study, we show that B cell deficiency leads to an abnormally rapid neutrophil migration toward the site of external stimulus. Using adoptive cell transfers and B cell genetic knockout, we demonstrate a previously unappreciated capacity of B cells to downregulate neutrophil motility. In our system, an advanced capture of BCG by neutrophils instead of macrophages leads to a significant decrease in numbers of IFN-gamma-producing T cells and impairs BCG performance in X-linked immune-deficient mice. The defect is readily compensated for by the in vivo neutrophil depletion.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Inibição de Migração Celular/imunologia , Tuberculose Pulmonar/prevenção & controle , Transferência Adotiva , Animais , Subpopulações de Linfócitos B/transplante , Linhagem Celular , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Fatores de Tempo , Tuberculose Pulmonar/patologia
4.
Antibiotics (Basel) ; 9(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599854

RESUMO

We synthesized 100 novel indole-based compounds with polyaza-functionalities, including 3-triazeneindoles, and tested their activity in vitro against laboratory M. tuberculosis H37Rv and clinical izoniazid-resistant CN-40 isolates, using gross and fine titration approaches. Here we present a few 3-triazeneindoles with the highest anti-mycobacterial activity. Introduction of short lipid tails into the 3-triazeneindole core additionally increased their activity against mycobacteria engulfed by murine macrophages. We also demonstrate that the compound TU112, one of the most active in our previous study, being not bioavailable after administration in mice per os, manifests prominent anti-mycobacterial activity after intravenous or aerosol delivery, as assessed by the mouse serum and lung supernatant titration assays.

6.
Tuberculosis (Edinb) ; 113: 130-138, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30514495

RESUMO

TB infection in mice develops relatively rapidly which interferes with experimental dissection of immune responses and lung pathology features that differ between genetically susceptible and resistant hosts. Earlier we have shown that the M. tuberculosis strain lacking four of five Rpf genes (ΔACDE) is seriously attenuated for growth in vivo. Using this strain, we assessed key parameters of lung pathology, immune and inflammatory responses in chronic and reactivation TB infections in highly susceptible I/St and more resistant B6 mice. ΔACDE mycobacteria progressively multiplied only in I/St lungs, whilst in B6 lung CFU counts decreased with time. Condensed TB foci apeared in B6 lungs at week 4 of infection, whilst in I/St their formation was delayed. At the late phase of infection, in I/St lungs TB foci fused resulting in extensive pneumonia, whereas in B6 lungs pathology was limited to condensed foci. Macrophage and neutrophil populations characteristically differed between I/St and B6 mice at early and late stages of infection: more neutrophils accumulated in I/St and more macrophages in B6 lungs. The expression level of chemokine genes involved in neutrophil influx was higher in I/St compared to B6 lungs. B6 lung cells produced more IFN-γ, IL-6 and IL-11 at the early and late phases of infection. Overall, using a new mouse model of slow TB progression, we demonstrate two important features of ineffective infection control underlined by shifts in lung inflammation: delay in early granuloma formation and fusion of granulomas resulting in consolidated pneumonia late in the infectious course.


Assuntos
Pulmão/microbiologia , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/microbiologia , Animais , Carga Bacteriana , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Genótipo , Granuloma do Sistema Respiratório/imunologia , Granuloma do Sistema Respiratório/metabolismo , Granuloma do Sistema Respiratório/microbiologia , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Mutação , Mycobacterium tuberculosis/patogenicidade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Fenótipo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/microbiologia , Fatores de Tempo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
7.
PLoS One ; 8(8): e72773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977351

RESUMO

The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+)CD11c(low)CD103(-) DCreg from lineage-negative (lin(-)) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+) T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+)Foxp3(+) Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells during M. tuberculosis infection is a part of the host protective strategy.


Assuntos
Células Dendríticas/imunologia , Predisposição Genética para Doença , Pulmão/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Aerossóis , Animais , Antígenos de Bactérias/imunologia , Adesão Celular , Técnicas de Cocultura , Linfonodos/imunologia , Linfonodos/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Fenótipo , Solubilidade , Células Estromais/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia , Tuberculose/genética
8.
PLoS One ; 5(5): e10469, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20454613

RESUMO

BACKGROUND: Infection with Mycobacterium tuberculosis (Mtb) results in different clinical outcomes ranging from asymptomatic containment to rapidly progressing tuberculosis (TB). The mechanisms controlling TB progression in immunologically-competent hosts remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: To address these mechanisms, we analyzed TB progression in a panel of genetically heterogeneous (A/SnxI/St) F2 mice, originating from TB-highly-susceptible I/St and more resistant A/Sn mice. In F2 mice the rates of TB progression differed. In mice that did not reach terminal stage of infection, TB progression did not correlate with lung Mtb loads. Nor was TB progression correlated with lung expression of factors involved in antibacterial immunity, such as iNOS, IFN-gamma, or IL-12p40. The major characteristics of progressing TB was high lung expression of the inflammation-related factors IL-1beta, IL-6, IL-11 (p<0.0003); CCL3, CCL4, CXCL2 (p<0.002); MMP-8 (p<0.0001). The major predictors of TB progression were high expressions of IL-1beta and IL-11. TNF-alpha had both protective and harmful effects. Factors associated with TB progression were expressed mainly by macrophages (F4-80(+) cells) and granulocytes (Gr-1(hi)/Ly-6G(hi) cells). Macrophages and granulocytes from I/St and A/Sn parental strains exhibited intrinsic differences in the expression of inflammatory factors, suggesting that genetically determined peculiarities of phagocytes transcriptional response could account for the peculiarities of gene expression in the infected lungs. Another characteristic feature of progressing TB was the accumulation in the infected lungs of Gr-1(dim) cells that could contribute to TB progression. CONCLUSIONS/SIGNIFICANCE: In a population of immunocompetent hosts, the outcome of TB depends on quantitatively- and genetically-controlled differences in the intensity of inflammatory responses, rather than being a direct consequence of mycobacterial colonization. Local accumulation of Gr-1(dim) cells is a newly identified feature of progressing TB. High expression of IL-1beta and IL-11 are potential risk factors for TB progression and possible targets for TB immunomodulation.


Assuntos
Granulócitos/patologia , Pulmão/patologia , Pneumonia/patologia , Tuberculose/patologia , Animais , Antígenos Ly/metabolismo , Contagem de Colônia Microbiana , Cruzamentos Genéticos , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Granulócitos/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fagócitos/metabolismo , Fagócitos/patologia , Pneumonia/complicações , Pneumonia/microbiologia , Locos de Características Quantitativas/genética , Tuberculose/complicações , Tuberculose/genética , Tuberculose/microbiologia , Redução de Peso
9.
Tuberculosis (Edinb) ; 88(6): 576-85, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18667358

RESUMO

Mouse tuberculosis (TB) models that utilize genetically susceptible mouse strains demonstrate many features of human lung disease. In the present study, pathology caused by progressive M. tuberculosis H37Rv infection in TB-susceptible I/St mice following the low-dose aerosol challenge showed close similarity to human TB, with formation of necrotic granuloma with adjusting B-cell-rich follicles. A remarkable feature was the development of hypoxic zones around TB lesions by day 60 of infection. Necrotizing inflammatory foci were abundantly infiltrated with Ly-6G+ neutrophils. The levels of mRNA for neutrophil-recruiting factors (KC, MIP-2, IL-17 and IL-6) were all significantly increased in infected compared to naïve animals. A profound elevation of the mRNA level for IFN-gamma resulted neither in mycobacterial growth inhibition, nor in IL-17 response counter-regulation. Three-month therapy with RIF and INH resulted in eradication of culturable mycobacteria (at least 9 months following withdrawal), recovery of the lung tissue structure, and normalization of inflammatory genes expression. However, stable mycobacterial DNA (M. tuberculosis-specific insertion IS6110 detected by the qrt-PCR) was retained in the lungs for a long time after culturable bacilli were eliminated, and combination of lung homogenate liquid cultures with auramine staining demonstrated the presence of acid-fast bacilli with unaltered mycobacterial morphology. The lack of mycobacterial growth on agar, their microscopic detection in concentrated liquid cultures, and the increase in numbers of IS6110 copies in vivo at late stages of cured infection suggest that in our model dormant M. tuberculosis survived in the host.


Assuntos
Modelos Animais de Doenças , Mycobacterium tuberculosis/fisiologia , Animais , Suscetibilidade a Doenças , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Imuno-Histoquímica , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
10.
Infect Immun ; 74(6): 3668-72, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16714600

RESUMO

Interstitial lung macrophages from tuberculosis-susceptible I/St and tuberculosis-resistant A/Sn mice demonstrated significant constitutive differences in gene expression levels, whereas in vitro infection of these cells with Mycobacterium tuberculosis had only a modulatory impact on gene expression. We conclude that intrinsic gene expression profiles are an important determinant of tuberculosis pathogenesis in mice.


Assuntos
Perfilação da Expressão Gênica , Predisposição Genética para Doença , Macrófagos/metabolismo , Tuberculose/genética , Animais , Quimiocinas/genética , Citocinas/genética , Macrófagos/microbiologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
11.
Infect Immun ; 73(9): 6174-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113343

RESUMO

Adoptive transfer of bone marrow cells from tuberculosis-resistant (I/St x A/Sn)F(1) donor mice into lethally irradiated susceptible I/St recipients changed their phenotype following infection with virulent Mycobacterium tuberculosis. Compared to I/St-->I/St control animals, F(1)-->I/St chimeras demonstrated (i) prolonged survival time, (ii) increased antimycobacterial function of lung macrophages, (iii) elevated gamma interferon production by lung cells, and (iv) decreased infiltration of the lungs with CD4(+) and CD8(+) T cells and Ly-6G(+) neutrophils.


Assuntos
Células da Medula Óssea/imunologia , Predisposição Genética para Doença , Fenótipo , Quimera por Radiação , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Transferência Adotiva , Animais , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Feminino , Imunofenotipagem , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos A , Tuberculose Pulmonar/mortalidade , Tuberculose Pulmonar/patologia
12.
Infect Immun ; 73(3): 1744-53, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15731075

RESUMO

The role of neutrophils in tuberculosis (TB) resistance and pathology is poorly understood. Neutrophil reactions are meant to target the offending pathogen but may lead to destruction of the host lung tissue, making the defending cells an enemy. Here, we show that mice of the I/St strain which are genetically susceptible to TB show an unusually high and prolonged neutrophil accumulation in their lungs after intratracheal infection. Compared to neutrophils from more resistant A/Sn mice, I/St neutrophils display an increased mobility and tissue influx, prolonged lifespan, low expression of the CD95 (Fas) apoptotic receptor, relative resistance to apoptosis, and an increased phagocytic capacity for mycobacteria. Segregation genetic analysis in (I/St x A/Sn)F2 hybrids indicates that the alleles of I/St origin at the chromosome 3 and 17 quantitative trait loci which are involved in the control of TB severity also determine a high level of neutrophil influx. These features, along with the poor ability of neutrophils to restrict mycobacterial growth compared to that of lung macrophages, indicate that the prevalence of neutrophils in TB inflammation contributes to the development of pathology, rather than protection of the host, and that neutrophils may play the role of a "Trojan horse" for mycobacteria.


Assuntos
Predisposição Genética para Doença , Mycobacterium tuberculosis/patogenicidade , Neutrófilos/imunologia , Tuberculose Pulmonar/imunologia , Animais , Citocinas/metabolismo , Inflamação , Pulmão/citologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos , Mycobacterium tuberculosis/imunologia , Infiltração de Neutrófilos , Fagocitose , Índice de Gravidade de Doença , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia
13.
Infect Immun ; 71(2): 697-707, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12540548

RESUMO

Mice of the I/St and A/Sn inbred strains display a severe and moderate course, respectively, of disease caused by Mycobacterium tuberculosis. Earlier, we showed that the response to mycobacterial antigens in I/St mice compared to that in A/Sn mice is shifted toward Th2-like reactivity and a higher proliferative activity and turnover of T cells. However, the physiologic basis for different expressions of tuberculosis severity in these mice remains largely unknown. Here, we extend our previous observations with evidence that I/St interstitial lung macrophages are defective in the ability to inhibit mycobacterial growth and to survive following in vitro infection with M. tuberculosis H37Rv. A unique feature of this phenotype is its exclusive expression in freshly isolated lung macrophages. The defect is not displayed in ex vivo macrophages obtained from the peritoneal cavity nor in macrophages developed in vitro from progenitors extracted from various organs, including the lung itself. In addition, we show that, in sharp contrast to peritoneal macrophages, the mycobactericidal capacity of lung macrophages is not elevated in the presence of exogenous gamma interferon. Our data suggest that the in vivo differentiation in a particular anatomical microenvironment determines the pattern of macrophage-mycobacterium interaction. Thus, caution should be exercised when conclusions based upon the results obtained in a particular in vitro system are generalized to the functions of all phagocytes during M. tuberculosis infection.


Assuntos
Imunidade Inata , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/imunologia , Animais , Técnicas de Cocultura , Predisposição Genética para Doença , Imunidade Inata/genética , Pulmão/citologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos , Fagocitose , Fenótipo , Índice de Gravidade de Doença , Tuberculose Pulmonar/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA