Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 9057, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227762

RESUMO

Glaucoma is a leading cause of blindness characterized by progressive degeneration of retinal ganglion cells (RGCs). A well-established risk factor for the development and progression of glaucoma is elevation of intraocular pressure (IOP). However, how elevated IOP leads to RGC degeneration remains poorly understood. Here, we fabricate a facile, tunable hydrostatic pressure platform to study the effect of increased hydrostatic pressure on RGC axon and total neurite length, cell body area, dendritic branching, and cell survival. The hydrostatic pressure can be adjusted by varying the height of a liquid reservoir attached to a three-dimensional (3D)-printed adapter. The proposed platform enables long-term monitoring of primary RGCs in response to various pressure levels. Our results showed pressure-dependent changes in the axon length, and the total neurite length. The proportion of RGCs with neurite extensions significantly decreased by an average of 38 ± 2% (mean ± SEM) at pressures 30 mmHg and above (p < 0.05). The axon length and total neurite length decreased at a rate of 1.65 ± 0.18 µm and 4.07 ± 0.34 µm, respectively (p < 0.001), for each mmHg increase in pressure after 72 hours pressure treatment. Dendritic branching increased by 0.20 ± 0.05 intersections/day at pressures below 25 mmHg, and decreased by 0.07 ± 0.01 intersections/day at pressures above 25 mmHg (p < 0.001). There were no significant changes in cell body area under different levels of hydrostatic pressure (p ≥ 0.05). Application of this model will facilitate studies on the biophysical mechanisms that contribute to the pathophysiology of glaucoma and provide a channel for the screening of potential pharmacological agents for neuroprotection.


Assuntos
Células Ganglionares da Retina/fisiologia , Animais , Glaucoma/fisiopatologia , Pressão Hidrostática , Pressão Intraocular , Dispositivos Lab-On-A-Chip , Ratos , Ratos Sprague-Dawley , Tonometria Ocular
2.
Stem Cells Dev ; 28(20): 1365-1375, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580778

RESUMO

Glaucoma is characterized by retinal ganglion cell (RGC) degeneration and is the second leading cause of blindness worldwide. However, current treatments such as eye drop or surgery have limitations and do not target the loss of RGC. Regenerative therapy using embryonic stem cells (ESCs) holds a promising option, but ethical concern hinders clinical applications on human subjects. In this study, we employed spermatogonial stem cells (SSCs) as an alternative source of ESCs for cell-based regenerative therapy in mouse glaucoma model. We generated functional RGCs from SSCs with a two-step protocol without applying viral transfection or chemical induction. SSCs were first dedifferentiated to embryonic stem-like cells (SSC-ESCs) that resemble ESCs in morphology, gene expression signatures, and stem cell properties. The SSC-ESCs then differentiated toward retinal lineages. We showed SSC-ESC-derived retinal cells expressed RGC-specific marker Brn3b and functioned as bona fide RGCs. To allow in vivo RGC tracing, Brn3b-EGFP reporter SSC-ESCs were generated and the derived RGCs were subsequently transplanted into the retina of glaucoma mouse models by intravitreal injection. We demonstrated that the transplanted RGCs could survive in host retina for at least 10 days after transplantation. SSC-ESC-derived RGCs can thus potentially be a novel alternative to replace the damaged RGCs in glaucomatous retina.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Glaucoma/terapia , Células Ganglionares da Retina/transplante , Células-Tronco Germinativas Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Genes Reporter , Glaucoma/induzido quimicamente , Glaucoma/genética , Glaucoma/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/administração & dosagem , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Cultura Primária de Células , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Testículo/citologia , Testículo/metabolismo , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo
3.
Invest Ophthalmol Vis Sci ; 53(11): 7194-200, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22997288

RESUMO

PURPOSE: To investigate the association between the distribution profile of the retinal nerve fiber layer (RNFL) bundles and myopia and its impact on interpretation of the RNFL map imaged by a spectral-domain optical coherence tomography (SD-OCT). METHODS: the RNFL of 189 myopic eyes from 103 normal healthy myopic participants was imaged by an SD-OCT. The angle between the long axes of the superotemporal and inferotemporal RNFL bundles determined in the RNFL thickness map (the RNFL distribution angle) and the abnormal area in the RNFL thickness deviation map were measured. The associations between the RNFL distribution angle and the axial length/spherical error, and between the area of abnormal RNFL measurement and each of the following: axial length, spherical error, RNFL distribution angle, average RNFL thickness, optic disc area, and signal strength were analyzed with linear mixed models. RESULTS: The RNFL distribution angle decreased with the axial length (P < 0.011). In the univariate analysis, the area of abnormal RNFL measurement was positively associated with the axial length (P = 0.001); and negatively associated with the RNFL distribution angle (P < 0.001), average RNFL thickness (P < 0.001), optic disc area (P ≤ 0.001), and signal strength (P = 0.026). In the multivariate analysis, the area of abnormal RNFL measurement was negatively associated with the RNFL distribution angle independent of other covariates. CONCLUSIONS: The superotemporal and inferotemporal RNFL bundles converged temporally with increasing myopia, which was associated with an increase in area of abnormal RNFL measurement. The interpretation of the RNFL thickness map in myopic eyes requires careful consideration of the distribution pattern of the RNFL bundles.


Assuntos
Miopia/patologia , Disco Óptico/patologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Adulto , Seguimentos , Humanos , Pessoa de Meia-Idade , Refração Ocular , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA