Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Epidemiol ; 39(6): 667-678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555549

RESUMO

BACKGROUND: Smokers are at increased risk of type 2 diabetes (T2D), but the underlying mechanisms are unclear. We investigated if the smoking-T2D association is mediated by alterations in the metabolome and assessed potential interaction with genetic susceptibility to diabetes or insulin resistance. METHODS: In UK Biobank (n = 93,722), cross-sectional analyses identified 208 metabolites associated with smoking, of which 131 were confirmed in Mendelian Randomization analyses, including glycoprotein acetyls, fatty acids, and lipids. Elastic net regression was applied to create a smoking-related metabolic signature. We estimated hazard ratios (HR) of incident T2D in relation to baseline smoking/metabolic signature and calculated the proportion of the smoking-T2D association mediated by the signature. Additive interaction between the signature and genetic risk scores for T2D (GRS-T2D) and insulin resistance (GRS-IR) on incidence of T2D was assessed as relative excess risk due to interaction (RERI). FINDINGS: The HR of T2D was 1·73 (95% confidence interval (CI) 1·54 - 1·94) for current versus never smoking, and 38·3% of the excess risk was mediated by the metabolic signature. The metabolic signature and its mediation role were replicated in TwinGene. The metabolic signature was associated with T2D (HR: 1·61, CI 1·46 - 1·77 for values above vs. below median), with evidence of interaction with GRS-T2D (RERI: 0·81, CI: 0·23 - 1·38) and GRS-IR (RERI 0·47, CI: 0·02 - 0·92). INTERPRETATION: The increased risk of T2D in smokers may be mediated through effects on the metabolome, and the influence of such metabolic alterations on diabetes risk may be amplified in individuals with genetic susceptibility to T2D or insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Resistência à Insulina , Fumar , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Fumar/efeitos adversos , Fumar/genética , Estudos Transversais , Reino Unido/epidemiologia , Resistência à Insulina/genética , Adulto , Idoso , Análise da Randomização Mendeliana , Metaboloma/genética , Fatores de Risco , Metabolômica
2.
Geroscience ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060678

RESUMO

Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.

3.
Aging Cell ; 23(6): e14135, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38414347

RESUMO

Epigenetics plays an important role in the aging process, but it is unclear whether epigenetic factors also influence frailty, an age-related state of physiological decline. In this study, we performed a meta-analysis of epigenome-wide association studies in four samples drawn from the Swedish Adoption/Twin Study of Aging (SATSA) and the Longitudinal Study of Aging Danish Twins (LSADT) to explore the association between DNA methylation and frailty. Frailty was defined using the frailty index (FI), and DNA methylation levels were measured in whole blood using Illumina's Infinium HumanMethylation450K and MethylationEPIC arrays. In the meta-analysis consisting of a total of 829 participants, we identified 589 CpG sites that were statistically significantly associated with either the continuous or categorical FI (false discovery rate <0.05). Many of these CpGs have previously been associated with age and age-related diseases. The identified sites were also largely directionally consistent in a longitudinal analysis using mixed-effects models in SATSA, where the participants were followed up to a maximum of 20 years. Moreover, we identified three differentially methylated regions within the MGRN1, MIR596, and TAPBP genes that have been linked to neuronal aging, tumor growth, and immune functions. Furthermore, our meta-analysis results replicated 34 of the 77 previously reported frailty-associated CpGs at p < 0.05. In conclusion, our findings demonstrate robust associations between frailty and DNA methylation levels in 589 novel CpGs, previously unidentified for frailty, and strengthen the role of neuronal/brain pathways in frailty.


Assuntos
Metilação de DNA , Epigenoma , Fragilidade , Humanos , Fragilidade/genética , Epigenoma/genética , Masculino , Feminino , Metilação de DNA/genética , Idoso , Estudo de Associação Genômica Ampla , Estudos de Coortes , Ilhas de CpG/genética , Envelhecimento/genética , Estudos Longitudinais , Epigênese Genética , Idoso de 80 Anos ou mais
4.
Clin Interv Aging ; 18: 2171-2183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152074

RESUMO

Electronic medical records (EMRs) have many benefits in clinical research in gerontology, enabling data analysis, development of prognostic tools and disease risk prediction. EMRs also offer a range of advantages in clinical practice, such as comprehensive medical records, streamlined communication with healthcare providers, remote data access, and rapid retrieval of test results, ultimately leading to increased efficiency, enhanced patient safety, and improved quality of care in gerontology, which includes benefits like reduced medication use and better patient history taking and physical examination assessments. The use of artificial intelligence (AI) and machine learning (ML) approaches on EMRs can further improve disease diagnosis, symptom classification, and support clinical decision-making. However, there are also challenges related to data quality, data entry errors, as well as the ethics and safety of using AI in healthcare. This article discusses the future of EMRs in gerontology and the application of AI and ML in clinical research. Ethical and legal issues surrounding data sharing and the need for healthcare professionals to critically evaluate and integrate these technologies are also emphasized. The article concludes by discussing the challenges related to the use of EMRs in research as well as in their primary intended use, the daily clinical practice.


Assuntos
Registros Eletrônicos de Saúde , Geriatria , Humanos , Inteligência Artificial , Atenção à Saúde , Tomada de Decisão Clínica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA