Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nephrology (Carlton) ; 23 Suppl 4: 50-52, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30298655

RESUMO

Acute kidney injury (AKI) is characterized by both non-inflammatory and inflammatory process, and accumulating evidence has demonstrated that inflammation plays a key role in the pathogenesis and progression of AKI. C-reactive protein (CRP), an acute reactant produced by liver and many inflammatory cells, acts not only as an inflammation biomarker, but also as a pathogenic factor for AKI. Indeed, increased concentration of CRP is associated with poor outcome of varied etiologically related AKI patients. In recent years, the role of CRP is gradually recognized as an active participant in the pathogenesis and progression of AKI by exacerbating local inflammation, impairing the proliferation of damaged tubular epithelial cells and promoting fibrosis of injured renal tissue.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína C-Reativa/metabolismo , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Fibrose , Humanos , Rim/patologia , Prognóstico , Fatores de Risco , Transdução de Sinais
2.
Toxicol Appl Pharmacol ; 336: 84-93, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066182

RESUMO

Activation of soluble epoxide hydrolase (sEH) is associated with endothelial dysfunction in hypertension, though the underlying mechanisms are inadequately understood and the role of endoplasmic reticulum (ER) stress is yet to be studied in detail. Tetramethylpyrazine (TMP), a major bioactive ingredient of Chinese herb Chuanxiong, is well-known for its cardiovascular benefits. Nevertheless, whether TMP may protect vascular endothelium from ER stress and whether regulation of sEH is involved remain unknown. This study aimed at investigating the role of ER stress in angiotensin-II (Ang-II)-induced sEH dysregulation and elucidating the significance of ER stress regulation in the vasoprotective effect of TMP. Porcine primary coronary artery endothelial cells (PCECs) were used for western blot, ELISA, and reverse-transcription PCR analysis. Porcine coronary arteries were assessed in a myograph for endothelial dilator function. Ang-II induced expression of ER stress molecules in PCECs meanwhile enhanced sEH expression and decreased 11,12-EET. Exposure of PCECs to the chemical ER stress inducer tunicamycin also increased sEH expression. Inhibition of ER stress suppressed sEH upregulation, resulting in an increase of 11,12-EET. The impairment of endothelium-dependent vasorelaxation induced by Ang-II or tunicamycin was ameliorated by inhibitors of ER stress or sEH. TMP showed comparable inhibitory effect to ER stress inhibitors on the expression of ER stress molecules, the dysregulation of sEH/EET, and the impairment of endothelial dilator function. We demonstrated that ER stress mediates Ang-II-induced sEH upregulation in coronary endothelium. TMP has potent anti-ER stress capacity through which TMP normalizes sEH expression and confers protective effect against Ang-II on endothelial function of coronary arteries.


Assuntos
Angiotensina II/toxicidade , Vasos Coronários/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Epóxido Hidrolases/metabolismo , Pirazinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Células Cultivadas , Vasos Coronários/enzimologia , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Técnicas In Vitro , Sus scrofa , Tunicamicina/toxicidade
3.
Oncotarget ; 8(31): 51462-51477, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881660

RESUMO

The molecular mechanism of endoplasmic reticulum (ER) stress in vascular pathophysiology remains inadequately understood. We studied the role of ER stress in homocysteine-induced impairment of coronary dilator function, with uncovering the molecular basis of the effect of ER stress on smooth muscle large-conductance Ca2+-activated K+ (BKCa) channels. The vasodilatory function of BKCa channels was studied in a myograph using endothelium-denuded porcine small coronary arteries. Primary cultured porcine coronary artery smooth muscle cells were used for mRNA and protein measurements and current recording of BKCa channels. Homocysteine inhibited vasorelaxant response to the BKCachannel opener NS1619, lowered BKCa ß1 subunit protein level and suppressed BKCa current. Inhibition of ER stress restored BKCa ß1 protein level and NS1619-evoked vasorelaxation. Selective blockade of the PKR-like ER kinase (PERK) yielded similarly efficient restoration of BKCa ß1, preserving BKCa current and BKCa-mediated vasorelaxation. The restoration of BKCa ß1 by PERK inhibition was associated with reduced atrogin-1 expression and decreased nuclear localization of forkhead box O transcription factor 3a (FoxO3a). Silencing of atrogin-1 prevented homocysteine-induced BKCa ß1 loss and silencing of FoxO3a prevented atrogin-1 upregulation induced by homocysteine, accompanied by preservation of BKCa ß1 protein level and BKCa current. ER stress mediates homocysteine-induced BKCa channel inhibition in coronary arteries. Activation of FoxO3a by PERK branch underlies the ER stress-mediated BKCa inhibition through a mechanism involving ubiquitin ligase-enhanced degradation of the channel ß1 subunit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA