Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074770

RESUMO

Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.


Assuntos
Anticorpos Antivirais/química , Sítios de Ligação , Capsídeo/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Parvovirus Canino/fisiologia , Ligação Proteica/fisiologia , Animais , Anticorpos Antivirais/imunologia , Antígenos/metabolismo , Microscopia Crioeletrônica , Cães , Epitopos/genética , Epitopos/imunologia , Mutação , Domínios Proteicos
2.
Cell ; 134(5): 828-42, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775315

RESUMO

The dendritic actin network generated by the Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing, and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with the Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces the Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks.


Assuntos
4-Butirolactona/análogos & derivados , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Cortactina/metabolismo , 4-Butirolactona/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos , Humanos , Camundongos , Pseudópodes , Ratos
3.
J Biol Chem ; 294(33): 12380-12391, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31235473

RESUMO

Three mitochondrial metabolic pathways are required for efficient energy production in eukaryotic cells: the electron transfer chain (ETC), fatty acid ß-oxidation (FAO), and the tricarboxylic acid cycle. The ETC is organized into inner mitochondrial membrane supercomplexes that promote substrate channeling and catalytic efficiency. Although previous studies have suggested functional interaction between FAO and the ETC, their physical interaction has never been demonstrated. In this study, using blue native gel and two-dimensional electrophoreses, nano-LC-MS/MS, immunogold EM, and stimulated emission depletion microscopy, we show that FAO enzymes physically interact with ETC supercomplexes at two points. We found that the FAO trifunctional protein (TFP) interacts with the NADH-binding domain of complex I of the ETC, whereas the electron transfer enzyme flavoprotein dehydrogenase interacts with ETC complex III. Moreover, the FAO enzyme very-long-chain acyl-CoA dehydrogenase physically interacted with TFP, thereby creating a multifunctional energy protein complex. These findings provide a first view of an integrated molecular architecture for the major energy-generating pathways in mitochondria that ensures the safe transfer of unstable reducing equivalents from FAO to the ETC. They also offer insight into clinical ramifications for individuals with genetic defects in these pathways.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Ciclo do Ácido Cítrico/fisiologia , Camundongos , Oxirredução , Ratos
4.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852845

RESUMO

The picornavirus-like deformed wing virus (DWV) has been directly linked to colony collapse; however, little is known about the mechanisms of host attachment or entry for DWV or its molecular and structural details. Here we report the three-dimensional (3-D) structures of DWV capsids isolated from infected honey bees, including the immature procapsid, the genome-filled virion, the putative entry intermediate (A-particle), and the empty capsid that remains after genome release. The capsids are decorated by large spikes around the 5-fold vertices. The 5-fold spikes had an open flower-like conformation for the procapsid and genome-filled capsids, whereas the putative A-particle and empty capsids that had released the genome had a closed tube-like spike conformation. Between the two conformations, the spikes undergo a significant hinge-like movement that we predicted using a Robetta model of the structure comprising the spike. We conclude that the spike structures likely serve a function during host entry, changing conformation to release the genome, and that the genome may escape from a 5-fold vertex to initiate infection. Finally, the structures illustrate that, similarly to picornaviruses, DWV forms alternate particle conformations implicated in assembly, host attachment, and RNA release. IMPORTANCE: Honey bees are critical for global agriculture, but dramatic losses of entire hives have been reported in numerous countries since 2006. Deformed wing virus (DWV) and infestation with the ectoparasitic mite Varroa destructor have been linked to colony collapse disorder. DWV was purified from infected adult worker bees to pursue biochemical and structural studies that allowed the first glimpse into the conformational changes that may be required during transmission and genome release for DWV.


Assuntos
Abelhas/virologia , Vírus de Insetos/fisiologia , Picornaviridae/fisiologia , Sequência de Aminoácidos , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Vírus de Insetos/ultraestrutura , Modelos Moleculares , Picornaviridae/ultraestrutura , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/ultraestrutura
5.
J Virol ; 90(21): 9733-9742, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535057

RESUMO

Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. IMPORTANCE: Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Parvovirus Canino/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Cães , Testes de Neutralização/métodos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia
6.
Proc Natl Acad Sci U S A ; 111(23): 8470-5, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24872454

RESUMO

The current practice for identifying crystal hits for X-ray crystallography relies on optical microscopy techniques that are limited to detecting crystals no smaller than 5 µm. Because of these limitations, nanometer-sized protein crystals cannot be distinguished from common amorphous precipitates, and therefore go unnoticed during screening. These crystals would be ideal candidates for further optimization or for femtosecond X-ray protein nanocrystallography. The latter technique offers the possibility to solve high-resolution structures using submicron crystals. Transmission electron microscopy (TEM) was used to visualize nanocrystals (NCs) found in crystallization drops that would classically not be considered as "hits." We found that protein NCs were readily detected in all samples tested, including multiprotein complexes and membrane proteins. NC quality was evaluated by TEM visualization of lattices, and diffraction quality was validated by experiments in an X-ray free electron laser.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/ultraestrutura , Proteínas/ultraestrutura , Proteínas Recombinantes/ultraestrutura , Animais , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Nanopartículas/química , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Reprodutibilidade dos Testes , Células Sf9
7.
J Virol ; 89(3): 1900-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25428877

RESUMO

UNLABELLED: Enterovirus 71 (EV71) is responsible for seasonal outbreaks of hand, foot, and mouth disease in the Asia-Pacific region. The virus has the capability to cause severe disease and death, especially in young children. Although several vaccines are currently in clinical trials, no vaccines or therapeutics have been approved for use. Previous structural studies have revealed that two antigenically distinct capsid forms are produced in EV71-infected cells: an expanded empty capsid, sometimes called a procapsid, and the infectious virus. Specifically, an immunodominant epitope of EV71 that maps to the virus canyon is structurally different in the procapsid and virus. This structure-function study shows that the procapsid can sequester antibodies, thus enhancing EV71 infection in vitro. The results presented here suggest that, due to conformational differences between the EV71 procapsid and virus, the presence of the procapsid in natural virus infections should be considered in the future design of vaccines or therapeutics. IMPORTANCE: In a picornavirus infection, both an infectious and a noninfectious empty capsid, sometimes referred to as a procapsid, are produced. It was novel to discover that the procapsid form of EV71 was expanded and antigenically distinct from the infectious virus. Previously, it had been supposed that this empty capsid was an off-pathway dead end or at best served for storage of pentameric subunits, which was later shown to be unlikely. It remains unexplained why picornaviruses evolutionarily conserve the wasteful production of so much noninfectious capsid. Here, we demonstrate that the EV71 procapsid has different antigenic properties than the infectious virus. Thus, the procapsid has the capacity to sequester neutralizing antibody and protect the virus, promoting or restoring a successful infection in vitro. This important observation should be considered in the future design and development of vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Capsídeo/imunologia , Enterovirus Humano A/imunologia , Enterovirus Humano A/fisiologia , Internalização do Vírus , Células HeLa , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
8.
J Virol ; 89(2): 1428-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392224

RESUMO

UNLABELLED: Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid-Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called "invading-arm" structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE: Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and "invading-arm" structures. This study advances the understanding of the neutralization mechanism used by H16.V5.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Capsídeo/imunologia , Epitopos/imunologia , Papillomavirus Humano 16/imunologia , Antígenos Virais/química , Antígenos Virais/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Microscopia Crioeletrônica , Epitopos/química , Epitopos/metabolismo , Papillomavirus Humano 16/química , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Ligação Proteica , Conformação Proteica
9.
J Virol ; 88(10): 5755-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623425

RESUMO

UNLABELLED: The coxsackievirus and adenovirus receptor (CAR) has been identified as the cellular receptor for group B coxsackieviruses, including serotype 3 (CVB3). CAR mediates infection by binding to CVB3 and catalyzing conformational changes in the virus that result in formation of the altered, noninfectious A-particle. Kinetic analyses show that the apparent first-order rate constant for the inactivation of CVB3 by soluble CAR (sCAR) at physiological temperatures varies nonlinearly with sCAR concentration. Cryo-electron microscopy (cryo-EM) reconstruction of the CVB3-CAR complex resulted in a 9.0-Šresolution map that was interpreted with the four available crystal structures of CAR, providing a consensus footprint for the receptor binding site. The analysis of the cryo-EM structure identifies important virus-receptor interactions that are conserved across picornavirus species. These conserved interactions map to variable antigenic sites or structurally conserved regions, suggesting a combination of evolutionary mechanisms for receptor site preservation. The CAR-catalyzed A-particle structure was solved to a 6.6-Šresolution and shows significant rearrangement of internal features and symmetric interactions with the RNA genome. IMPORTANCE: This report presents new information about receptor use by picornaviruses and highlights the importance of attaining at least an ∼9-Šresolution for the interpretation of cryo-EM complex maps. The analysis of receptor binding elucidates two complementary mechanisms for preservation of the low-affinity (initial) interaction of the receptor and defines the kinetics of receptor-catalyzed conformational change to the A-particle.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Enterovirus Humano B/fisiologia , Enterovirus Humano B/ultraestrutura , Ligação Viral , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Vírion/metabolismo , Vírion/ultraestrutura , Inativação de Vírus
10.
PLoS Pathog ; 9(3): e1003240, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555253

RESUMO

Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ∼10 Šin diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release.


Assuntos
Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/patogenicidade , Genoma Viral , Interações Hospedeiro-Patógeno , Desenvelopamento do Vírus/fisiologia , Capsídeo/fisiologia , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Endocitose , Enterovirus Humano A/metabolismo , Enterovirus Humano A/ultraestrutura , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Ligação Proteica , RNA Viral/fisiologia , Receptores de Superfície Celular/metabolismo , Vírion/genética
11.
Nucleic Acids Res ; 41(11): 5927-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23605044

RESUMO

Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8-ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing.


Assuntos
DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas Virais/química , Cristalografia por Raios X , DNA/química , DNA de Cadeia Simples/ultraestrutura , Modelos Moleculares
12.
J Virol ; 87(21): 11363-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23946455

RESUMO

Enterovirus 71 (EV71) is a picornavirus that causes outbreaks of hand, foot, and mouth disease (HFMD), primarily in the Asia-Pacific area. Unlike coxsackievirus A16, which also causes HFMD, EV71 induces severe neuropathology leading to high fatalities, especially among children under the age of 6 years. Currently, no established vaccines or treatments are available against EV71 infection. The monoclonal antibody MA28-7 neutralizes only specific strains of EV71 that have a conserved glycine at amino acid VP1-145, a surface-exposed residue that maps to the 5-fold vertex and that has been implicated in receptor binding. The cryo-electron microscopy structure of a complex between EV71 and the Fab fragment of MA28-7 shows that only one Fab fragment occupies each 5-fold vertex. A positively charged patch, which has also been implicated in receptor binding, lies within the Fab footprint. We identify the strain-specific epitope of EV71 and discuss the possible neutralization mechanisms of the antibody.


Assuntos
Anticorpos Neutralizantes/imunologia , Enterovirus Humano A/imunologia , Epitopos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/ultraestrutura , Pré-Escolar , Microscopia Crioeletrônica , Enterovirus Humano A/química , Enterovirus Humano A/ultraestrutura , Epitopos/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Vírion/ultraestrutura
13.
J Virol ; 87(13): 7637-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637404

RESUMO

Enterovirus 71 (EV71) is an important emerging human pathogen with a global distribution and presents a disease pattern resembling poliomyelitis with seasonal epidemics that include cases of severe neurological complications, such as acute flaccid paralysis. EV71 is a member of the Picornaviridae family, which consists of icosahedral, nonenveloped, single-stranded RNA viruses. Here we report structures derived from X-ray crystallography and cryoelectron microscopy (cryo-EM) for the 1095 strain of EV71, including a putative precursor in virus assembly, the procapsid, and the mature virus capsid. The cryo-EM map of the procapsid provides new structural information on portions of the capsid proteins VP0 and VP1 that are disordered in the higher-resolution crystal structures. Our structures solved from virus particles in solution are largely in agreement with those from prior X-ray crystallographic studies; however, we observe small but significant structural differences for the 1095 procapsid compared to a structure solved in a previous study (X. Wang, W. Peng, J. Ren, Z. Hu, J. Xu, Z. Lou, X. Li, W. Yin, X. Shen, C. Porta, T. S. Walter, G. Evans, D. Axford, R. Owen, D. J. Rowlands, J. Wang, D. I. Stuart, E. E. Fry, and Z. Rao, Nat. Struct. Mol. Biol. 19:424-429, 2012) for a different strain of EV71. For both EV71 strains, the procapsid is significantly larger in diameter than the mature capsid, unlike in any other picornavirus. Nonetheless, our results demonstrate that picornavirus capsid expansion is possible without RNA encapsidation and that picornavirus assembly may involve an inward radial collapse of the procapsid to yield the native virion.


Assuntos
Capsídeo/diagnóstico por imagem , Enterovirus Humano A/genética , Modelos Moleculares , Vírion/ultraestrutura , Capsídeo/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Ultrassonografia , Vírion/fisiologia
14.
Mol Pharm ; 10(1): 187-98, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23244299

RESUMO

PEGylated lipopeptide surfactants carrying drug-interactive motifs specific for a peptide-nitroxide antioxidant, JP4-039, were designed and constructed to facilitate the solubilization of this drug candidate as micelles and emulsion nanoparticles. A simple screening process based on the ability that prevents the formation of crystals of JP4-039 in aqueous solution was used to identify agents that have potential drug-interactive activities. Several protected lysine derivatives possessing this activity were identified, of which α-Fmoc-ε-t-Boc lysine is the most potent, followed by α-Cbz- and α-iso-butyloxycarbonyl-ε-t-Boc-lysine. Using a polymer-supported liquid-phase synthesis approach, a series of synthetic lipopeptide surfactants with PEG headgroup, varied numbers and geometries of α-Fmoc or α-Cbz-lysyl groups located at interfacial region as the drug-interactive domains, and oleoyl chains as the hydrophobic tails were synthesized. All α-Fmoc-lysyl-containing lipopeptide surfactants were able to solubilize JP4-039 as micelles, with enhanced solubilizing activity for surfactants with increased numbers of α-Fmoc groups. The PEGylated lipopeptide surfactants with α-Fmoc-lysyl groups alone tend to form filamentous or wormlike micelles. The presence of JP4-039 transformed α-Fmoc-containing filamentous micelles into dots and barlike mixed micelles with substantially reduced sizes. Fluorescence quenching and NMR studies revealed that the drug and surfactant molecules were in close proximity in the complex. JP4-039-loaded emulsion carrying α-Cbz-containing surfactants demonstrated enhanced stability over drug-loaded emulsion without lipopeptide surfactants. JP4-039 emulsion showed a significant mitigation effect on mice exposed to a lethal dose of radiation. PEGylated lipopeptides with an interfacially located drug-interactive domain are therefore tailor-designed formulation materials potentially useful for drug development.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Tensoativos/química , Animais , Antioxidantes/química , Química Farmacêutica/métodos , Desenho de Fármacos , Interações Medicamentosas , Emulsões/química , Lipopeptídeos/química , Lisina/análogos & derivados , Lisina/química , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Micelas , Modelos Moleculares , Óxidos de Nitrogênio/química , Peptídeos/química , Polímeros/química , Solubilidade
15.
Pharm Res ; 30(6): 1525-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23579481

RESUMO

PURPOSE: To develop spherulite formulations to achieve high entrapment efficiency for both small and macromolecules as well as cell-type specific delivery. METHODS: Spherulites of various compositions were prepared, and lipid-PEG was incorporated through post-insertion. Calcein and FITC-labeled albumin were employed as model drugs for small and macromolecules. The spherulites were characterized with respect to entrapment efficiency, size, structure, and release kinetics, and the morphology was examined via cryo-EM. Finally, SV119-decorated spherulites were examined for their selective uptake by cancer cells. RESULTS: The spherulites are 170 ~ 290 nm in size. A loading efficiency of 55 ~ 60% can be consistently achieved for both calcein and albumin under optimized conditions. Cryo-EM shows the onion-like morphology consistent with the structure of multilamellar liposomes. A t(½) of 39.3 h and 69.7 h in cargo release in serum was observed before and after PEG decoration, and incorporation of SV119 led to selective delivery of rhodamine-labeled spherulites to PC-3 tumor cells. CONCLUSIONS: Our optimized formulations may represent a platform with simple preparation approach, relatively small particle size, high drug loading efficiency for both low and high molecular weight agents, and slow release kinetics for selective delivery of various types of therapeutics to target cells.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Substâncias Macromoleculares/química , Bibliotecas de Moléculas Pequenas/química , Albuminas/administração & dosagem , Albuminas/química , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Dexametasona/administração & dosagem , Dexametasona/química , Portadores de Fármacos/administração & dosagem , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Fluoresceínas/administração & dosagem , Fluoresceínas/química , Humanos , Cinética , Lipídeos/administração & dosagem , Lipossomos/administração & dosagem , Lipossomos/química , Substâncias Macromoleculares/administração & dosagem , Peso Molecular , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Rodaminas/administração & dosagem , Rodaminas/química , Albumina Sérica/administração & dosagem , Albumina Sérica/química , Bibliotecas de Moléculas Pequenas/administração & dosagem
16.
J Virol ; 85(17): 8625-34, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21697480

RESUMO

Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Dissulfetos/metabolismo , Herpesvirus Humano 1/química , Herpesvirus Humano 1/metabolismo , Animais , Chlorocebus aethiops , Ditiotreitol/metabolismo , Etilmaleimida/metabolismo , Herpesvirus Humano 1/efeitos dos fármacos , Modelos Moleculares , Substâncias Redutoras/metabolismo , Células Vero , Vírion/ultraestrutura
17.
Biochemistry ; 50(8): 1359-67, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21226479

RESUMO

The cullin4A-RING E3 ubiquitin ligase (CRL4) is a multisubunit protein complex, comprising cullin4A (CUL4), RING H2 finger protein (RBX1), and DNA damage-binding protein 1 (DDB1). Proteins that recruit specific targets to CRL4 for ubiquitination (ubiquitylation) bind the DDB1 adaptor protein via WD40 domains. Such CRL4 substrate recognition modules are DDB1- and CUL4-associated factors (DCAFs). Here we show that, for DCAF1, oligomerization of the protein and the CRL4 complex occurs via a short helical region (residues 845-873) N-terminal to DACF1's own WD40 domain. This sequence was previously designated as a LIS1 homology (LisH) motif. The oligomerization helix contains a stretch of four Leu residues, which appear to be essential for α-helical structure and oligomerization. In vitro reconstituted CRL4-DCAF1 complexes (CRL4(DCAF1)) form symmetric dimers as visualized by electron microscopy (EM), and dimeric CRL4(DCAF1) is a better E3 ligase for in vitro ubiquitination of the UNG2 substrate compared to a monomeric complex.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Multimerização Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Humanos , Insetos/citologia , Camundongos , Dados de Sequência Molecular , Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Sequências Repetitivas de Aminoácidos , Soluções
18.
Am J Physiol Lung Cell Mol Physiol ; 298(1): L15-22, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19783639

RESUMO

Gel-forming mucins are the largest complex glycoprotein macromolecules in the body. They form the matrix of gels protecting all the surface epithelia and are secreted as disulfide-bonded polymeric structures. The mechanisms by which they are formed and organized within cells and thereafter released to form mucus gels are not understood. In particular, the initial rate of expansion of the mucins after release from their secretory granules is very rapid (seconds), but no clear mechanism for how it is achieved has emerged. Our major interest is in lung mucins, but most particularly in MUC5B, which is the major gel-forming mucin in mucus, and which provides its major protective matrix. In this study, using OptiPrep density gradient ultracentrifugation, we have isolated a small amount of a stable form of the recently secreted and expanding MUC5B mucin, which accounts for less than 2% of the total mucin present. It has an average mass of approximately 150 x 10(6) Da and size Rg of 150 nm in radius of gyration. In transmission electron microscopy, this compact mucin has maintained a circular structure that is characterized by flexible chains connected around protein-rich nodes as determined by their ability to bind colloidal gold. The appearance indicates that the assembled mucins in a single granular form are organized around a number of nodes, each attached to four to eight subunits. The organization of the mucins in this manner is consistent with efficient packing of a number of large heavily glycosylated monomers while still permitting their rapid unfolding and hydration. For the first time, this provides some insight into how the carbohydrate regions might be organized around the NH(2)- and COOH-terminal globular protein domains within the granule and also explains how the mucin can expand so rapidly upon its release.


Assuntos
Géis/metabolismo , Mucina-5B/química , Mucina-5B/metabolismo , Vesículas Secretórias/metabolismo , Humanos , Masculino , Modelos Moleculares , Peso Molecular , Mucina-5B/isolamento & purificação , Mucina-5B/ultraestrutura , Estrutura Terciária de Proteína
19.
Hum Gene Ther ; 30(12): 1449-1460, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530236

RESUMO

Adeno-associated viruses (AAVs) have been employed successfully as gene therapy vectors in treating various genetic diseases for almost two decades. However, transgene packaging is usually imperfect, and developing a rapid and accurate method for measuring the proportion of DNA encapsidation is an important step for improving the downstream process of large scale vector production. In this study, we used two-dimensional class averages and three-dimensional classes, intermediate outputs in the single particle cryo-electron microscopy (cryo-EM) image reconstruction pipeline, to determine the proportion of DNA-packaged and empty capsid populations. Two different preparations of AAV3 were analyzed to estimate the minimum number of particles required to be sampled by cryo-EM in order for robust calculation of the proportion of the full versus empty capsids in any given sample. Cost analysis applied to the minimum amount of data required for a valid ratio suggests that cryo-EM is an effective approach to analyze vector preparations.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Dependovirus/ultraestrutura , Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Vírion/genética , Vírion/ultraestrutura
20.
J Mol Biol ; 355(5): 911-22, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16343538

RESUMO

The rate of annealing of long linear complementary single-stranded (ss) DNAs can be increased greatly by certain DNA-binding proteins including the herpes simplex virus type 1 ICP8 SSB/recombinase. Using electron microscopy, we have investigated the DNA-protein structures involved in ICP8-mediated DNA annealing. We show that the formation of superhelical ICP8-ssDNA filaments is required for annealing. Two superhelices interact with each other to form a coiled-coil, which is the intermediate in annealing. In this process, the superhelices likely rotate and translocate relative to each other. Psoralen/UV photocrosslinking studies revealed that meta-stable contacts form at sites of limited sequence homology during the annealing. Partial proteolysis of ICP8 in the protein-ssDNA complexes showed that Mg2+ induces conformational changes in the N-terminal region (amino acid residues 1-305) of ICP8. In addition to Mg2+, Ca2+ and, to a significantly lesser extent, Cu2+ and Mn2+, were found to induce superhelix formation of the ICP8-ssDNA filament and to facilitate annealing. Mechanisms for how the coiled-coil structures facilitate annealing are discussed.


Assuntos
DNA de Cadeia Simples , Conformação de Ácido Nucleico , Conformação Proteica , Recombinases/metabolismo , Proteínas Virais/metabolismo , Animais , Reagentes de Ligações Cruzadas/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA , Ficusina/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Renaturação Proteica , Recombinases/ultraestrutura , Proteínas Virais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA