Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938830

RESUMO

The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.


Assuntos
Histonas , Peixe-Zebra , Animais , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional , Desenvolvimento Embrionário/genética , Nucleossomos
2.
Cell Rep ; 36(7): 109551, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407406

RESUMO

Rapid removal of histone H2A.Z from neuronal chromatin is a key step in learning-induced gene expression and memory formation, but mechanisms underlying learning-induced H2A.Z removal are unclear. Anp32e was recently identified as an H2A.Z-specific histone chaperone that removes H2A.Z from nucleosomes in dividing cells, but its role in non-dividing neurons is unclear. Moreover, prior studies investigated Anp32e function under steady-state rather than stimulus-induced conditions. Here, we show that Anp32e regulates H2A.Z binding in neurons under steady-state conditions, with lesser impact on stimulus-induced H2A.Z removal. Functionally, Anp32e depletion leads to H2A.Z-dependent impairment in transcription and dendritic arborization in cultured hippocampal neurons, as well as impaired recall of contextual fear memory and transcriptional regulation. Together, these data indicate that Anp32e regulates behavioral and morphological outcomes by preventing H2A.Z accumulation in chromatin rather than by regulating activity-mediated H2A.Z dynamics.


Assuntos
Dendritos/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Memória , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Transcrição Gênica , Animais , Cromatina/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nat Commun ; 11(1): 5063, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033242

RESUMO

Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels.


Assuntos
Cromatina/metabolismo , Genoma , Chaperonas Moleculares/metabolismo , Animais , Diferenciação Celular/genética , DNA Helicases/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA