Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Pharm (Weinheim) ; 356(4): e2200508, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587981

RESUMO

Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Humanos , Relação Estrutura-Atividade , Anidrase Carbônica IX/química , Anidrase Carbônica IX/metabolismo , Estrutura Molecular , Anidrases Carbônicas/metabolismo , Desenvolvimento de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Cumarínicos/farmacologia , Cumarínicos/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química
2.
Drug Dev Res ; 83(7): 1469-1504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971890

RESUMO

With different nitrogen-containing heterocyclic moieties, Indazoles earn one of the places among the top investigated molecules in medicinal research. Indazole, an important fused aromatic heterocyclic system containing benzene and pyrazole ring with a chemical formula of C7 H6 N2 , is also called benzopyrazole. Indazoles consist of three tautomeric forms in which 1H-tautomers (indazoles) and 2H-tautomers (isoindazoles) exist in all phases. The tautomerism in indazoles greatly influences synthesis, reactivity, physical and even the biological properties of indazoles. The thermodynamic internal energy calculation of these tautomers points view 1H-indazole as the predominant and stable form over 2H-indazole. The natural source of indazole is limited and exists in alkaloidal nature (i.e., nigellidine, nigeglanine, nigellicine, etc.) found from Nigella plants. Some of the FDA-approved drugs like Axitinib, Entrectinib, Niraparib, Benzydamine, and Granisetron are being used to treat renal cell cancer, non-small cell lung cancer (NSCLC), epithelial ovarian cancer, chronic inflammation, chemotherapy-induced nausea, vomiting, and many more uses. Besides all these advantages regarding its biological activity, the main issue about indazoles is the less abundance in plant sources, and their synthetic derivatives also often face problems with low yield. In this review article, we discuss its chemistry, tautomerism along with their effects, different schematics for the synthesis of indazole derivatives, and their different biological activities.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Indazóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
Int J Biol Macromol ; 256(Pt 2): 128402, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035955

RESUMO

Drug development process demands validation of specific drug target impeding the Multi Drug Resistance (MDR). DNA gyrase, as a bacterial target has been in trend for developing newer antibacterial candidates due to its absence in higher eukaryotes. The fluoroquinolones are the leading molecules in the drug discovery pipeline for gyrase inhibition due to its diversity. The fluoroquinolones like levofloxacin and moxifloxacin have been listed in class A drugs for treating MDR. Gatifloxacin and ciprofloxacin also proved its efficacy against MDR TB and MDR enteric fever in adults, whereas nemonoxacin can induce anti-MDR activity of other antibiotics already suggested by studies. Though fluoroquinolones already proved its effectiveness against gyrase, other molecules viz., benzothiazinone, phenyl pyrrolamide, substituted oxadiazoles, triazolopyrimidine, arylbenzothiazole, coumarinyl amino alcohols and ciprofloxacin uracil, can inhibit the target more precisely. The structure-activity-relationships of the different scaffolds along with their synthetic strategies have been deciphered in the current review. Also, the naturally occurring compounds along with their extraction procedure have also been highlighted as potent DNA gyrase inhibitors. In addition to fluoroquinolone, the natural compounds novobiocin and simocyclinone could also inhibit the gyrase, impressively which has been designed with the gyrase structure for better understanding. Herein, ongoing clinical development of some novel drugs possessing triazaacenaphthylenes, spiropyrimidinetriones, and oxazolidinone-quinolone hybrids have been highlighted which could further assist the future generation antibiotic development corroborating gyrase as a potential target against MDR pathogens.


Assuntos
Antibacterianos , DNA Girase , DNA Girase/química , Antibacterianos/farmacologia , Antibacterianos/química , Fluoroquinolonas/química , Ciprofloxacina , Inibidores da Topoisomerase II/farmacologia , Testes de Sensibilidade Microbiana
4.
Nanoscale Adv ; 6(11): 2766-2812, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817429

RESUMO

The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.

5.
RSC Adv ; 14(43): 31633-31647, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39376521

RESUMO

The briskened urge to develop potential antibacterial candidates against multidrug-resistant pathogens has motivated the present research study. Herein, newly synthesized coumarin derivatives with azomethine and amino-methylated as the functional groups have been focused on their antibacterial efficacy. The study proposed two distinct series: 3-acetyl substituted coumarin derivatives, followed by the Schiff base approach (5a-5i), and formaldehyde-secondary cyclic amine-based derivatives (7a-7g), using the Mannich base approach, further the compounds have been confirmed through various spectral studies. Further, target-specific binding affinity has been affirmed via in silico study. In vitro antibacterial study suggested compounds 5d and 5f to be most effective against S. aureus and multidrug-resistant K. pneumoniae, with MIC values of 8 and 16 µg mL-1. Among them, the compounds 5d and 5f showed excellent binding scores against different bacterial gyrase compared to the standard novobiocin. Based on RMRS, RMSF, Rg, and H-bond plots, MD simulation study at 100 ns also suggested better stability of 5d inside gyraseB of E. coli than the complex of E. coli-GyrB-novobiocin. The toxicity and pharmacokinetic profiles showed favorable drug-likeness. Overall, systematic in vitro and in silico assessment suggested that multimodal antibacterial derivatives 5d and 5f strongly inhibit both bacterial DNA gyrase and biofilm formation of drug-resistant pathogens, suggesting their potency in mainstream antibacterial therapy.

6.
Int J Biol Macromol ; 249: 126084, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37532192

RESUMO

Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by 1H/13C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction. The structure and crystallinity of compound 4d have been confirmed by single XRD analysis. The synthesized molecules were screened for their in vitro anti-cancer properties in triple negative breast cancer cell line (MDA-MB-231), pancreatic cancer cell lines (MIA PaCa-2) and oral squamous cell carcinoma cell line (H357) and results indicated that all the compounds inhibited the cell proliferation in a concentration-dependent manner at different time points. The compounds 4b and 6d were found to be effective against the S. aureus bacterial strain whereas only compound 4d fairly inhibited the fungal strain of T. rubrum with a MIC 12.5 µg/mL. Molecular docking study reveals good interaction of the synthesized compounds with known target MELK involved in oncogenesis having high binding profiles. The lead compound 6c was further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Staphylococcus aureus , Zíper de Leucina , Espectroscopia de Infravermelho com Transformada de Fourier , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Dinâmica Molecular , Proliferação de Células , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Imidazóis/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral
7.
Curr Drug Targets ; 22(12): 1376-1403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390127

RESUMO

In neurodegenerative disorders, there is a progressive degeneration of the body, leading to the death of nerve cells. In this state, a patient gets affected day by day with mental weakness, dementia, and ataxia. Alzheimer's disease (AD) is the most common irreversible neurodegenerative brain disorder mainly affecting people over the age of 65. Many types of research suggest that the main culprit for AD is the aggregated form of a (39-43) amino acid peptide called amyloid beta. Amyloid beta (Aß) is generated by the action of beta-secretase and gamma-secretase on the larger glycoprotein. Gamma (γ) secretase is an intra-membrane protease complex that cleaves the single-- pass transmembrane protein, the amyloid precursor protein, and Notch. The γ-secretase complex contains presenilin, presenilin enhancer-2, anterior pharynx defective-1, and nicastrin. Any mutation in presenilin-1 or the cleavage of amyloid precursor protein by γ-secretase directly or indirectly is associated with AD. Therefore, the prevention of this enzyme is one of the solutions for AD. In this article, we discuss the γ-secretase complex and its inhibitors that can contribute to the prevention of AD.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Humanos , Presenilina-1
8.
Curr Med Chem ; 28(16): 3193-3215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32674727

RESUMO

Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARß), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR gama , Humanos , Hipoglicemiantes , Ligantes , Masculino , PPAR alfa , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA