Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci Technol ; 56(1): 71-82, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30728548

RESUMO

The present study optimized the extraction protocol conditions to obtain the antioxidant-rich bioactive extracts from Carica papaya L. (Papaya) leaves. A Box and Behnken Design (BBD) consisting of three different extracting variables viz. extracting temperature (60-70 °C), time (10-20 min) and solvent concentration (55-65%) was used. Antioxidant efficacy was recorded by evaluating four responses viz. ABTS, DPPH, SASA and total phenolic contents. The optimized model predicted, solvent concentration of 60% with extraction time of 15 min and extracting temperature of 65 °C with bioactive-rich antioxidants having highest total phenolic activity. The efficacy of obtained bioactive-rich papaya leaves extracts (PLE) were subjected for in-vivo evaluation in chevon emulsion added with the level of T-1 (0.10%); T-2 (0.25%); T-3 (0.50%) and control (without extract) stored under refrigeration (4 ± 1 °C) for 9 days by evaluating various physicochemical, microbiological, sensory quality characteristics. The pH was significantly higher for control than all treatments and water activity (aw) showed decreasing trend throughout storage period. Oxidation efficiency values showed an increasing drift during storage period, irrespective of added level of PLE, showing lowest oxidation in samples treated with 0.5% PLE. Sensory panellists awarded comparatively higher scores to all PLE treatments than control. Microbiological quality of emulsion incorporated with different levels of papaya leaves extract successfully improved and was lower in 0.5% PLE treated samples. It was concluded that extraction of bioactive antioxidants from Carica papaya L. leaves improved by optimising extraction parameters using RSM. Carica papaya L. leaves extracts have proven prospects as natural anti-oxidants in chevon emulsion as a meat emulsion system.

2.
Crit Rev Food Sci Nutr ; 57(5): 923-932, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25898027

RESUMO

There is a scarcity of protein of high biological value due to rapid increase in the world population and limited natural resources. Meat is a good source of protein of high biological value but converting the vegetable protein into animal protein is not economical. There is a trend of production of healthy and delicious meat free food for satisfaction of vegetarian and personal well beings. This resulted in increasing use of low cost vegetable protein such as textured soy protein, mushroom, wheat gluten, pulses etc as a substitute for animal-protein. These simulated meat-like products, with similar texture, flavor, color, and nutritive value can be substituted directly for meat to all sections of the society.


Assuntos
Dieta Vegetariana , Produtos da Carne , Proteínas de Vegetais Comestíveis/química , Paladar , Agaricales/química , Animais , Cor , Comportamento do Consumidor , Carboidratos da Dieta/análise , Proteínas do Ovo/química , Gengiva/química , Glutens/química , Humanos , Valor Nutritivo , Proteínas de Soja/química
3.
Crit Rev Food Sci Nutr ; 57(13): 2844-2856, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26463373

RESUMO

Fermentation of meat is a traditional preservation method used widely for improving quality and shelf life of fermented meat products. Fermentation of meat causes a number of physical, biochemical, and microbial changes, which eventually impart functional properties, sensory characteristics, and nutritional aspects to these products and inhibit the growth of various pathogenic and spoilage microorganisms. These changes include acidification (carbohydrate catabolism), solubilization and gelation of myofibrillar and sarcoplasmic proteins of muscle, degradation of proteins and lipids, reduction of nitrate into nitrite, formation of nitrosomyoglobin, and dehydration. Dry-fermented sausages are increasingly being used as carrier of probiotics. The production of biogenic amines during fermentation can be controlled by selecting proper starter cultures and other preventive measures such as quality of raw materials, hygienic measures, temperature, etc.


Assuntos
Fermentação , Conservação de Alimentos/métodos , Produtos da Carne/normas , Aminas Biogênicas/análise , Contagem de Colônia Microbiana , Microbiologia de Alimentos
4.
Crit Rev Food Sci Nutr ; 55(9): 1241-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24915320

RESUMO

The health-conscious consumers are in search of nutritious and convenient food item which can be best suited in their busy life. The vegetarianism is the key for the search of such food which resembles the meat in respect of nutrition and sensory characters, but not of animal origin and contains vegetable or its modified form, this is the point when meat analog evolved out and gets shape. The consumers gets full satisfaction by consumption of meat analog due to its typical meaty texture, appearance and the flavor which are being imparted during the skilled production of meat analog. The supplement of protein in vegetarian diet through meat alike food can be fulfilled by incorporating protein-rich vegetative food grade materials in meat analog and by adopting proper technological process which can promote the proper fabrication of meat analog with acceptable meat like texture, appearance, flavor, etc. The easily available vegetables, cereals, and pulses in India have great advantages and prospects to be used in food products and it can improve the nutritional and functional characters of the food items. The various form and functional characters of food items are available world over and attracts the meat technologists and the food processors to bring some innovativeness in meat analog and its presentation and marketability so that the acceptability of meat analog can be overgrown by the consumers.


Assuntos
Dieta Vegetariana , Manipulação de Alimentos/métodos , Carne , Valor Nutritivo , Proteínas de Vegetais Comestíveis , Produtos Vegetais , Alimento Funcional/análise , Humanos , Índia , Paladar
5.
Vet World ; 9(2): 151-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27051201

RESUMO

AIM: The present study was conducted to develop a functional meat product by fortifying calcium (in the form of calcium lactate) with restructured buffalo meat loaf (RBML). MATERIALS AND METHODS: Deboned buffalo meat obtained from the carcass of adult female buffalo within 5-6 h of slaughter and stored under frozen condition. Calcium fortified RBML were prepared by replacing the lean buffalo meat with calcium lactate powder at 0%, 1%, 1.25%, and 1.5% level through the pre-standardized procedure. The developed products were evaluated for physico-chemical properties, proximate composition, calcium concentration (mg/100 g), water activity (aw), Lovibond(®) tintometer color units, texture profile analysis (TPA), and sensory qualities as per-standard procedures. RESULTS: Of the various product quality parameters evaluated, cooking yield (%), product pH, moisture (%), protein (%), fat (%), and water activity (aw) decreases significantly with increasing level of calcium lactate. Calcium content of fortified functional RBMLs was 135.02, 165.73, and 203.85 mg/100 g as compared to 6.48 mg/100 g in control. Most of the sensory scores at 1% and 1.25% levels of calcium lactate in treatment products remained comparable among themselves and control product, with a gradual decline. CONCLUSIONS: The present study concluded that 1.25% calcium lactate was the optimum level for the fortification of calcium in RBML without affecting the textural and sensory properties which could meet out 15% of recommended dietary allowance for calcium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA