Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; : e0079424, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940558

RESUMO

Coronavirus disease 2019 (COVID-19) has claimed millions of lives since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and lung disease appears the primary cause of death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors. Two cytokines in particular, IP-10 and IL-8, were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei, not only inhibited virus replication but also production of pro-inflammatory cytokines, and thus ameliorated the histopathological changes caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. IMPORTANCE: Here, established an ex vivo human precision-cut lung slice platform for assessing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe coronavirus disease 2019 (COVID-19), and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.

2.
Infect Immun ; 91(7): e0013123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338372

RESUMO

Inhalation of respiratory droplets infected with Yersinia pestis results in a rapidly progressing and lethal necrotic pneumonia called primary pneumonic plague. Disease manifests as biphasic, with an initial preinflammatory phase with rapid bacterial replication in the lungs absent readily detectable host immune responses. This is followed by the onset of a proinflammatory phase that sees the dramatic upregulation of proinflammatory cytokines and extensive neutrophil accumulation in the lungs. The plasminogen activator protease (Pla) is an essential virulence factor that is responsible for survival of Y. pestis in the lungs. Our lab recently showed that Pla functions as an adhesin that promotes binding to alveolar macrophages to facilitate translocation of effector proteins called Yops into the cytosol of target host cells via a type 3 secretion system (T3SS). Loss of Pla-mediated adherence disrupted the preinflammatory phase of disease and resulted in early neutrophil migration to the lungs. While it is established that Yersinia broadly suppresses host innate immune responses, it is not clear precisely which signals need to be inhibited to establish a preinflammatory stage of infection. Here, we show that early Pla-mediated suppression of Interleukin-17 (IL-17) expression in alveolar macrophages and pulmonary neutrophils limits neutrophil migration to the lungs and aids in establishing a preinflammatory phase of disease. In addition, IL-17 ultimately contributes to neutrophil migration to the airways that defines the later proinflammatory phase of infection. These results suggest that the pattern of IL-17 expression contributes to the progression of primary pneumonic plague.


Assuntos
Peste , Yersinia pestis , Animais , Camundongos , Interleucina-17/genética , Interleucina-17/metabolismo , Infiltração de Neutrófilos , Pulmão/microbiologia , Yersinia pestis/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Infect Immun ; 90(12): e0032822, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36374101

RESUMO

CD4 T cell-dependent IFNγ production and antibody are the two best known effectors for protective immunity against Chlamydia female reproductive tract (FRT) infection. Nevertheless, mice lacking either IFNγ or B cells can clear the vast majority of Chlamydia from the FRT, while suffering from varying degrees of disseminated infection. In this study, we investigated whether IFNγ and B cells play complementary roles in host defense against Chlamydia and evaluated their relative contributions in systemic and mucosal tissues. Using mice deficient in both IFNγ and B cells (IFNγ-/- x µMT), we showed that mice lacking both effectors were highly susceptible to lethal systemic bacterial dissemination following Chlamydia muridarum intravaginal infection. Passive transfer of immune convalescent serum, but not recombinant IFNγ, reduced bacterial burden in both systemic and mucosal tissues in IFNγ-/- x µMT mice. Notably, over the course of primary infection, we observed a reduction of bacterial shedding of more than 2 orders of magnitude in IFNγ-/- x µMT mice following both C. muridarum and C. trachomatis FRT infections. In contrast, no protective immunity against C. muridarum reinfection was detected in the absence of IFNγ and B cells. Together, our results suggest that IFNγ and B cells synergize to combat systemic Chlamydia dissemination, while additional IFNγ and B cell-independent mechanisms exist for host resistance to Chlamydia in the lower FRT.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Infecções do Sistema Genital , Feminino , Camundongos , Animais , Reinfecção , Chlamydia trachomatis , Infecções por Chlamydia/microbiologia , Infecções do Sistema Genital/microbiologia , Interferon gama , Anticorpos Antibacterianos
4.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257535

RESUMO

Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/imunologia , Genitália Feminina/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Interferon gama/imunologia , Camundongos Endogâmicos C57BL/imunologia , Infecções do Sistema Genital/imunologia , Animais , Chlamydia muridarum , Feminino , Humanos , Camundongos , Modelos Animais
5.
Eur J Immunol ; 50(5): 676-684, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32026472

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis causes the most prevalent bacterial sexually transmitted infection worldwide. CD4 T cells play a central role in the protective immunity against Chlamydia female reproductive tract (FRT) infection, while B cells are thought to be dispensable for resolution of primary Chlamydia infection in mouse models. We recently reported an unexpected requirement of B cells in local Chlamydia-specific CD4 T-cell priming and bacterial containment within the FRT. Here, we sought to tackle the precise effector function of B cells during Chlamydia primary infection. Using mixed bone marrow chimeras that lack B-cell-dependent Ag presentation (MHCIIB-/- ) or devoid of circulating antibodies (AID-/- × µS-/- ), we show that Chlamydia-specific CD4 T-cell expansion does not rely on Ag presentation by B cells. Importantly, we demonstrate that antibody, but not B-cell-dependent Ag presentation, is required for preventing systemic bacterial dissemination following Chlamydia FRT infection.


Assuntos
Anticorpos Antibacterianos/biossíntese , Linfócitos B/imunologia , Bacteriemia/imunologia , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Animais , Apresentação de Antígeno , Linfócitos B/microbiologia , Bacteriemia/microbiologia , Bacteriemia/patologia , Células da Medula Óssea/microbiologia , Linfócitos T CD4-Positivos/microbiologia , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/patogenicidade , Modelos Animais de Doenças , Feminino , Imunidade Humoral , Isotipos de Imunoglobulinas , Camundongos , Quimeras de Transplante , Vagina/imunologia , Vagina/microbiologia , Irradiação Corporal Total
6.
Biomedicines ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540156

RESUMO

Recent epidemiological studies suggest that individuals with Down syndrome are more susceptible to SARS-CoV-2 infection and have higher rates of hospitalization and mortality than the general population. However, the main drivers behind these disparate health outcomes remain unknown. Herein, we performed experimental infections with SARS-CoV-2 in a well-established mouse model of Down syndrome. We observed similar SARS-CoV-2 replication kinetics and dissemination in the primary and secondary organs between mice with and without Down syndrome, suggesting that both groups have similar susceptibilities to SARS-CoV-2 infection. However, Down syndrome mice exhibited more severe disease as defined by clinical features including symptoms, weight loss, pulmonary function, and survival of mice. We found that increased disease severity in Down syndrome mice could not be attributed solely to increased infectivity or a more dramatic pro-inflammatory response to infection. Rather, results from RNA sequencing suggested that differences in the expression of genes from other physiological pathways, such as deficient oxidative phosphorylation, cardiopulmonary dysfunction, and deficient mucociliary clearance in the lungs may also contribute to heightened disease severity and mortality in Down syndrome mice following SARS-CoV-2 infection.

7.
bioRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131640

RESUMO

COVID-19 has claimed millions of lives since the emergence of SARS-CoV-2, and lung disease appears the primary cause of the death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where the human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors, reflecting the heterogeneity of human populations. In particular, two cytokines (IP-10 and IL-8) were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei , not only inhibited virus replication but also production of pro-inflammatory cytokines, and ameliorated the histopathological changes of the lungs caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. SIGNIFICANCE: Here we established an ex vivo human precision-cut lung slice platform for assessing SARS-CoV-2 infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe COVID-19, and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.

8.
Br J Haematol ; 143(5): 641-53, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18950462

RESUMO

Killer immunoglobulin-like receptor (KIR)-ligand mismatched natural killer (NK) cells play a key role in achieving durable remission after haplo-identical transplantation for acute myeloid leukaemia. We investigated the feasibility of transfusing haplo-identical, T-cell depleted, KIR-ligand mismatched NK cells, after conditioning therapy with melphalan and fludarabine, to patients with advanced multiple myeloma (MM) followed by delayed rescue with autologous stem cells. No graft-versus-host disease or failure of autologous stem cells to engraft was observed. There was significant variation in the number of allo-reactive NK cells transfused. However, all NK products containing allo-reactive NK cells killed the NK cell target K562, the MM cell line U266, and recipient MM cells when available. Post NK cell infusion there was a rise in endogenous interleukin-15 accompanied by increasing donor chimaerism. Donor chimaerism was eventually lost, which correlated with the emergence of potent host anti-donor responses indicating that the immunosuppressive properties of the conditioning regimen require further optimization. Further, blocking of inhibitory KIR-ligands with anti-human leucocyte antigen antibody substantially enhanced killing of MM cells thus highlighting the potential for modulating NK/MM cell interaction. Encouragingly, 50% of patients achieved (near) complete remission. These data set the stage for future studies of KIR-ligand mismatched NK cell therapy in the autologous setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Mieloma Múltiplo/terapia , Receptores KIR/imunologia , Adulto , Idoso , Linhagem Celular , Testes Imunológicos de Citotoxicidade , Feminino , Haplótipos , Humanos , Células Matadoras Naturais/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Recidiva , Transplante Autólogo , Resultado do Tratamento
9.
Cell Signal ; 50: 72-79, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29964149

RESUMO

Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.


Assuntos
Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HEK293 , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Blood ; 111(3): 1309-17, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17947507

RESUMO

Human leukocyte antigen class I molecules expressed by tumor cells play a central role in the regulation of natural killer (NK) cell-mediated immune responses. The proteasome inhibitor bortezomib has demonstrated significant activity in multiple myeloma (MM). We hypothesized that treatment of MM with bortezomib results in the reduction of cell-surface expression of class I and thereby sensitizes MM to NK cell-mediated lysis. Here we report that bortezomib down-regulates class I in a time- and dose-dependent fashion on all MM cell lines and patient MM cells tested. Downregulation of class I can also be induced in vivo after a single dose of 1.0 mg/m(2) bortezomib. Bortezomib significantly enhances the sensitivity of patient myeloma to allogeneic and autologous NK cell-mediated lysis. Further, the level of decrease in class I expression correlates with increased susceptibility to lysis by NK cells. Clinically relevant bortezomib concentrations do not affect NK-cell function. Our findings have clear therapeutic implications for MM and other NK cell-sensitive malignancies in the context of both allogeneic and autologous adoptively transferred NK cells.


Assuntos
Ácidos Borônicos/farmacologia , Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/imunologia , Pirazinas/farmacologia , Bortezomib , Membrana Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Receptores KIR/classificação , Receptores KIR/imunologia , Sensibilidade e Especificidade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA