Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(7): 1411-1421, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722938

RESUMO

Advancing with our project about the development of new antiparasitic agents, we have enzymatically synthesized a series of amides derived from amlodipine, a calcium channel blocker used as an antihypertensive drug. Through lipase-catalyzed acylation with different carboxylic acids, nineteen amlodipine derivatives were obtained, eighteen of which were new compounds. To optimize the reaction conditions, the influence of several reaction parameters was analyzed, finding different requisites for aliphatic carboxylic acids and phenylacetic acids. All synthesized compounds were evaluated as antiproliferative agents against Trypanosoma cruzi, the etiological agent of American trypanosomiasis (Chagas' disease). Some of them showed significant activity against the amastigote form of T. cruzi, the clinically relevant form of the parasite. Among synthesized compounds, the derivatives of myristic and linolenic acids showed higher efficacy and lower cytotoxicity. These results added to the advantages shown by the enzymatic methodology, such as mild reaction conditions and low environmental impact, making this approach a valuable way to synthesize these amlodipine derivatives with an application as promising antiparasitic agents.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Antiparasitários/uso terapêutico , Acilação , Ácidos Carboxílicos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico
2.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630539

RESUMO

Cancer is one of the most important causes of death worldwide. Solid tumors represent the vast majority of cancers (>90%), and the chemotherapeutic agents used for their treatment are still characterized by variable efficacy and toxicity. Sesquiterpenes are a group of natural compounds that have shown a wide range of biological activities, including cytotoxic and antiparasitic activity, among others. The antiproliferative activity of natural sesquiterpenes, tessaric acid, ilicic acid, and ilicic alcohol and their semisynthetic derivatives against HeLa, T-47D, WiDr, A549, HBL-100, and SW1573 cell lines were evaluated. The effect of the compounds on Trypanosoma cruzi epimastigotes was also assessed. The selectivity index was calculated using murine splenocytes. Derivatives 13 and 15 were the most antiproliferative compounds, with GI50 values ranging between 5.3 (±0.32) and 14 (±0.90) µM, in all cell lines tested. The presence of 1,2,3-triazole groups in derivatives 15−19 led to improvements in activity compared to those corresponding to the starting natural product (3), with GI50 values ranging between 12 (±1.5) and 17 (±1.1) µM and 16 being the most active compound. In relation to the anti-T. cruzi activity, derivatives 7 and 16 obtained from tessaric acid and ilicic acid were among the most active and selective compounds with IC50 values of 9.3 and 8.8 µM (SI = 8.0 and 9.4), respectively.


Assuntos
Antineoplásicos , Sesquiterpenos , Trypanosoma cruzi , Animais , Antineoplásicos/farmacologia , Células HeLa , Humanos , Camundongos , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade
3.
Molecules ; 25(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344932

RESUMO

The sesquiterpene lactones eupatoriopicrin, estafietin, eupahakonenin B and minimolide have been isolated from Argentinean Astearaceae species and have been found to be active against Trypanosoma cruzi epimastigotes. The aim of this work was to evaluate the activity of these compounds by analyzing their effect against the stages of the parasites that are infective for the human. Even more interesting, we aimed to determine the effect of the most active and selective compound on an in vivo model of T. cruzi infection. Eupatoriopicrin was the most active against amastigotes and tripomastigotes (IC50 = 2.3 µg/mL, and 7.2 µg/mL, respectively) and displayed a high selectivity index. This compound was selected to study on an in vivo model of T. cruzi infection. The administration of 1 mg/kg/day of eupatoriopicrin for five consecutive days to infected mice produced a significant reduction in the parasitaemia levels in comparison with non-treated animals (area under parasitaemia curves 4.48 vs. 30.47, respectively). Skeletal muscular tissues from eupatopicrin-treated mice displayed only focal and interstitial lymphocyte inflammatory infiltrates and small areas of necrotic; by contrast, skeletal tissues from T. cruzi infected mice treated with the vehicle showed severe lymphocyte inflammatory infiltrates with necrosis of the adjacent myocytes. The results indicate that eupatoriopicrin could be considered a promising candidate for the development of new therapeutic agents for Chagas disease.


Assuntos
Asteraceae/química , Lactonas/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Tripanossomicidas/farmacologia , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Humanos , Lactonas/química , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sensibilidade e Especificidade , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Trypanosoma cruzi/efeitos dos fármacos
4.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897836

RESUMO

Cancer is one of the most important causes of death worldwide. Solid tumors represent the great majority of cancers (>90%) and the chemotherapeutic agents used for their treatment are still characterized by variable efficacy and toxicity. Sesquiterpene lactones are a group of naturally occurring compounds that have displayed a diverse range of biological activities including cytotoxic activity. A series of oxygenated and oxy-nitrogenated derivatives (4⁻15) from the sesquiterpene lactones cumanin (1), helenalin (2), and hymenin (3) were synthesized. The silylated derivatives of helenalin, compounds 13 and 14, were found to be the most active against tumor cell lines, with GI50 values ranging from 0.15 to 0.59 µM. The ditriazolyl cumanin derivative (11) proved to be more active and selective than cumanin in the tested breast, cervix, lung, and colon tumor cell lines. This compound was the least toxic against splenocytes (CC50 = 524.1 µM) and exhibited the greatest selectivity on tumor cell lines. This compound showed a GI50 of 2.3 µM and a SI of 227.9 on WiDr human colon tumor cell lines. Thus, compound 11 can be considered for further studies and is a candidate for the development of new antitumor agents.


Assuntos
Lactonas/química , Sesquiterpenos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Humanos , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano
5.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925657

RESUMO

Sesquiterpene lactones are naturally occurring compounds mainly found in the Asteraceae family. These types of plant metabolites display a wide range of biological activities, including antiprotozoal activity and are considered interesting structures for drug discovery. Four derivatives were synthesized from estafietin (1), isolated from Stevia alpina (Asteraceae): 11ßH,13-dihydroestafietin (2), epoxyestafietin (3a and 3b), 11ßH,13-methoxyestafietin, (4) and 11ßH,13-cianoestafietin. The antiprotozoal activity against Trypanosoma cruzi and Leishmania braziliensis of these compounds was evaluated. Epoxyestafietin was the most active compound against T. cruzi trypomastigotes and amastigotes (IC50 values of 18.7 and 2.0 µg/mL, respectively). Estafietin (1) and 11ßH,13-dihydroestafietin (2) were the most active and selective compounds on L. braziliensis promastigotes (IC50 values of 1.0 and 1.3 µg/mL, respectively). The antiparasitic activity demonstrated by estafietin and some of its derivatives make them promising candidates for the development of effective compounds for the treatment of Chagas disease and leihsmaniasis.


Assuntos
Leishmania braziliensis/efeitos dos fármacos , Sesquiterpenos de Guaiano/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiparasitários/química , Antiparasitários/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Espectroscopia de Prótons por Ressonância Magnética , Sesquiterpenos de Guaiano/química , Trypanosoma cruzi/crescimento & desenvolvimento , Células Vero
6.
Immunity ; 31(4): 598-608, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19818651

RESUMO

Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/química , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Antígenos de Histocompatibilidade Classe I/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C3H , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Ligação Proteica/imunologia , Conformação Proteica , Multimerização Proteica
7.
Biochem J ; 474(1): 179-194, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27831490

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune system that eliminate virally infected or malignantly transformed cells. NK cell function is regulated by diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 receptors control NK cell cytotoxicity by sensing major histocompatibility complex class I molecules (MHC-I) on target cells. Although crystal structures have been reported for Ly49/MHC-I complexes, the underlying binding mechanism has not been elucidated. Accordingly, we carried out thermodynamic and kinetic experiments on the interaction of four NK Ly49 receptors (Ly49G, Ly49H, Ly49I and Ly49P) with two MHC-I ligands (H-2Dd and H-2Dk). These Ly49s embrace the structural and functional diversity of the highly polymorphic Ly49 family. Combining surface plasmon resonance, fluorescence anisotropy and far-UV circular dichroism (CD), we determined that the best model to describe both inhibitory and activating Ly49/MHC-I interactions is one in which the two MHC-I binding sites of the Ly49 homodimer present similar binding constants for the two sites (∼106 M-1) with a slightly positive co-operativity in some cases, and without far-UV CD observable conformational changes. Furthermore, Ly49/MHC-I interactions are diffusion-controlled and enthalpy-driven. These features stand in marked contrast with the activation-controlled and entropy-driven interaction of Ly49s with the viral immunoevasin m157, which is characterized by strong positive co-operativity and conformational selection. These differences are explained by the distinct structures of Ly49/MHC-I and Ly49/m157 complexes. Moreover, they reflect the opposing roles of NK cells to rapidly scan for virally infected cells and of viruses to escape detection using immunoevasins such as m157.


Assuntos
Antígeno de Histocompatibilidade H-2D/química , Complexos Multiproteicos/química , Subfamília A de Receptores Semelhantes a Lectina de Células NK/química , Animais , Antígeno de Histocompatibilidade H-2D/genética , Antígeno de Histocompatibilidade H-2D/imunologia , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Ressonância de Plasmônio de Superfície , Termodinâmica
8.
Nucleic Acids Res ; 44(16): 7700-13, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27257069

RESUMO

Translesion DNA polymerases (Pol) function in the bypass of template lesions to relieve stalled replication forks but also display potentially deleterious mutagenic phenotypes that contribute to antibiotic resistance in bacteria and lead to human disease. Effective activity of these enzymes requires association with ring-shaped processivity factors, which dictate their access to sites of DNA synthesis. Here, we show for the first time that the mismatch repair protein MutS plays a role in regulating access of the conserved Y-family Pol IV to replication sites. Our biochemical data reveals that MutS inhibits the interaction of Pol IV with the ß clamp processivity factor by competing for binding to the ring. Moreover, the MutS-ß clamp association is critical for controlling Pol IV mutagenic replication under normal growth conditions. Thus, our findings reveal important insights into a non-canonical function of MutS in the regulation of a replication activity.


Assuntos
DNA Polimerase beta/metabolismo , Replicação do DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pseudomonas aeruginosa/metabolismo , Biocatálise , DNA/biossíntese , DNA/química , DNA Polimerase III/metabolismo , Etilnitrosoureia , Mutagênese/genética , Peptídeos/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/crescimento & desenvolvimento , Resposta SOS em Genética/genética , Especificidade por Substrato
9.
Biochim Biophys Acta ; 1860(10): 2255-68, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27130882

RESUMO

BACKGROUND: We previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell-cell interactions. Gal-8 is a "tandem-repeat"-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon. METHODS: We performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization. RESULTS: We showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells. CONCLUSIONS: Our data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms. GENERAL SIGNIFICANCE: A novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Fetais/metabolismo , Galectinas/metabolismo , Mapas de Interação de Proteínas/genética , Antígenos CD/genética , Neoplasias da Mama/patologia , Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Células Endoteliais/metabolismo , Feminino , Proteínas Fetais/genética , Galectinas/genética , Glicosilação , Humanos , Ligação Proteica , Propriedades de Superfície
10.
J Infect Dis ; 211(5): 698-707, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25160983

RESUMO

We have reported that attenuated Salmonella (S) carrying plasmids encoding the cysteine protease cruzipain (Cz) protects against Trypanosoma cruzi infection. Here, we determined whether immunoprotection could be improved by the oral coadministration of 3 Salmonella carrying the plasmids that encode the antigens Cz, Tc52, and Tc24. SCz+STc52+STc24-immunized mice presented an increased antibody response against each antigen compared with those in the single antigen-immunized groups, as well as higher trypomastigotes antibody-mediated lyses and cell invasion inhibition compared with controls. SCz+STc52+STc24-immunized and -challenged mice rendered lower parasitemia. Weight loss after infection was detected in all mice except those in the SCz+STc52+STc24 group. Moreover, cardiomyopathy-associated enzyme activity was significantly lower in SCz+STc24+STc52-immunized mice compared with controls. Few or no abnormalities were found in muscle tissues of SCz+STc24+STc52-immunized mice, whereas controls presented with inflammatory foci, necrosis, and amastigote nests. We conclude that a multicomponent approach that targets several invasion and metabolic mechanisms improves protection compared with single-component vaccines.


Assuntos
Doença de Chagas/prevenção & controle , Portadores de Fármacos , Vacinas Protozoárias/imunologia , Salmonella/genética , Trypanosoma cruzi/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Peso Corporal , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C3H , Miocárdio/patologia , Parasitemia/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/genética , Resultado do Tratamento , Trypanosoma cruzi/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
11.
J Biol Chem ; 289(8): 5083-96, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24379405

RESUMO

Natural killer (NK) cells discriminate between healthy and virally infected or transformed cells using diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 NK receptors, which can adopt two distinct conformations (backfolded and extended), are of particular importance for detecting cells infected with mouse cytomegalovirus (CMV) via recognition of the viral immunoevasin m157. The interaction of m157 with activating (Ly49H) and inhibitory (Ly49I) receptors governs the spread of mouse CMV. We carried out kinetic and thermodynamic experiments to elucidate the Ly49/m157 binding mechanism. Combining surface plasmon resonance, fluorescence anisotropy, and circular dichroism (CD), we determined that the best model to describe both the Ly49H/m157 and Ly49I/m157 interactions is a conformational selection mechanism where only the extended conformation of Ly49 (Ly49*) is able to bind the first m157 ligand followed by binding of the Ly49*/m157 complex to the second m157. The interaction is characterized by strong positive cooperativity such that the second m157 binds the Ly49 homodimer with a 1000-fold higher sequential constant than the first m157 (∼10(8) versus ∼10(5) M(-1)). Using far-UV CD, we obtained evidence for a conformational change in Ly49 upon binding m157 that could explain the positive cooperativity. The rate-limiting step of the overall mechanism is a conformational transition in Ly49 from its backfolded to extended form. The global thermodynamic parameters from the initial state (backfolded Ly49 and m157) to the final state (Ly49*/(m157)2) are characterized by an unfavorable enthalpy that is compensated by a favorable entropy, making the interaction spontaneous.


Assuntos
Muromegalovirus/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Virais/metabolismo , Animais , Anisotropia , Dicroísmo Circular , Fluorescência , Antígenos de Histocompatibilidade Classe I/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Subfamília A de Receptores Semelhantes a Lectina de Células NK/química , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Temperatura , Termodinâmica , Proteínas Virais/química
12.
Immunology ; 145(3): 429-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752767

RESUMO

Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iß. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iß have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iß. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile.


Assuntos
Proteínas de Transporte/imunologia , Citocinas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Peptidoglicano/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Bactérias/efeitos dos fármacos , Bactérias/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Immunoblotting , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microscopia de Fluorescência , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Ligação Proteica/imunologia
13.
Biochem J ; 458(3): 481-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24351077

RESUMO

Several toxins that act on animal cells present different, but specific, interactions with cholesterol or sphingomyelin. In the present study we demonstrate that HlyA (α-haemolysin) of Escherichia coli interacts directly with cholesterol. We have recently reported that HlyA became associated with detergent-resistant membranes enriched in cholesterol and sphingomyelin; moreover, toxin oligomerization, and hence haemolytic activity, diminishes in cholesterol-depleted erythrocytes. Considering these results, we studied the insertion process, an essential step in the lytic mechanism, by the monolayer technique, finding that HlyA insertion is favoured in cholesterol- and sphingomyelin-containing membranes. On the basis of this result, we studied the direct interaction with either of the lipids by lipid dot blotting, lysis inhibition and SPR (surface plasmon resonance) assays. The results of the present study demonstrated that an interaction between cholesterol and HlyA exists that seems to favour a conformational state of the protein that allows its correct insertion into the membrane and its further oligomerization to form pores.


Assuntos
Colesterol/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Colesterol/química , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Hemólise , Técnicas In Vitro , Ovinos , Esfingomielinas/química , Esfingomielinas/metabolismo , Ressonância de Plasmônio de Superfície , Lipossomas Unilamelares/química
14.
J Biol Chem ; 288(32): 23380-93, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23803603

RESUMO

As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca(2+)-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca(2+)-ATPase activity was related to an increase in the apparent affinity for Ca(2+) and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca(2+) homeostasis.


Assuntos
Actinas/química , Cálcio/química , Membrana Eritrocítica/química , Homeostase/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Multimerização Proteica/fisiologia , Actinas/isolamento & purificação , Actinas/metabolismo , Animais , Cálcio/metabolismo , Membrana Eritrocítica/metabolismo , Humanos , Transporte de Íons/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Coelhos
15.
Infect Immun ; 82(10): 4265-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25069980

RESUMO

In this work we immunized mice with DNA encoding full-length Tc52 or its amino- or carboxy-terminal (N- and C-term, respectively) domain carried by attenuated Salmonella as a DNA delivery system. As expected, Salmonella-mediated DNA delivery resulted in low antibody titers and a predominantly Th1 response, as shown by the ratio of IgG2a/IgG1-specific antibodies. Despite modest expression of Tc52 in trypomastigotes, the antibodies elicited by vaccination were able to mediate lysis of the trypomastigotes in the presence of complement and inhibit their invasion of mammal cells in vitro. The strongest functional activity was observed with sera from mice immunized with Salmonella carrying the N-term domain (SN-term), followed by Tc52 (STc52), and the C-term domain (SC-term). All immunized groups developed strong cellular responses, with predominant activation of Th1 cells. However, mice immunized with SN-term showed higher levels of interleukin-10 (IL-10), counterbalancing the inflammatory reaction, and also strong activation of Tc52-specific gamma interferon-positive (IFN-γ(+)) CD8(+) T cells. In agreement with this, although all prototypes conferred protection against infection, immunization with SN-term promoted greater protection than that with SC-term for all parameters tested and slightly better protection than that with STc52, especially in the acute stage of infection. We conclude that the N-terminal domain of Tc52 is the section of the protein that confers maximal protection against infection and propose it as a promising candidate for vaccine development.


Assuntos
Doença de Chagas/prevenção & controle , Portadores de Fármacos , Vetores Genéticos , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Salmonella typhimurium/genética , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA , Análise de Sobrevida , Células Th1/imunologia , Resultado do Tratamento
16.
Nat Prod Res ; 38(4): 690-695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36938813

RESUMO

Chagas disease is an infection caused by the protozoan Trypanosoma cruzi, affecting 6-8 million people worldwide. Only two drugs are available for its treatment, having a limited efficacy and adverse side-effects. Estafietin is a sesquiterpene lactone isolated from Stevia alpina with in vitro activity against T. cruzi and low cytotoxicity against mammalian cells. The aim of this work was to predict the toxicologic profile of estafietin by in silico methods and assess its in vivo activity on a murine model of Chagas disease. Estafietin showed low toxicity according to pkCSM web tool and passed the PAINS filter from PAINS-remover web server. The treatment of infected mice with 1 mg/Kg/day of estafietin for five consecutive days administrated by intraperitoneal route significatively decreased parasitemia levels and reduced inflammatory infiltrates and myocyte damage on muscle tissue. These results suggest that estafietin had effect both on acute and chronic stages of the infection.


Assuntos
Doença de Chagas , Stevia , Tripanossomicidas , Trypanosoma cruzi , Humanos , Camundongos , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Sesquiterpenos de Guaiano/farmacologia , Parasitemia/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , Mamíferos
17.
Pharmaceutics ; 16(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543309

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, affects 6-7 million people worldwide. The dichloromethane extract obtained from the aerial parts of Gymnocoronis spilanthoides var subcordata showed trypanocidal activity in vitro. The fractionation of the dewaxed organic extract via column chromatography led to the isolation of three diterpenoids: ent-9α,11α-dihydroxy-15-oxo-kaur-16-en-19-oic acid or adenostemmoic acid B, (16R)-ent-11α-hydroxy-15-oxokauran-19-oic acid and ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid. These compounds showed IC50 values of 10.6, 15.9 and 4.8 µM against T. cruzi epimastigotes, respectively. When tested against amastigotes, the diterpenoids afforded IC50 values of 6.1, 19.5 and 60.6 µM, respectively. The cytotoxicity of the compounds was tested on mammalian cells using an MTT assay, resulting in CC50s of 321.8, 23.3 and 14.8 µM, respectively. The effect of adenostemmoic acid B on T. cruzi was examined at the ultrastructural level using transmission microscopy. Treatment with 20 µM for 48 h stimulated the formation of abnormal cytosolic membranous structures in the parasite. This compound also showed an anti-inflammatory effect in murine macrophages stimulated with LPS and other TLR agonists. Treatment of macrophages with adenostemmoic acid B was able to reduce TNF secretion and nitric oxide production, while increasing IL-10 production. The combination of adenostemmoic acid B with benznidazole resulted in greater inhibition of NF-kB and a decrease in nitrite concentration. The administration of adenostemmoic acid B to mice infected with trypomastigotes of T. cruzi at the dose of 1 mg/kg/day for five days produced a significant decrease in parasitemia levels and weight loss. Treatment with the association with benznidazole increased the survival time of the animals. In view of these results, adenostemmoic acid B could be considered a promising candidate for further studies in the search for new treatments for Chagas disease.

18.
Pharmaceutics ; 15(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839969

RESUMO

Stevia species (Asteraceae) have been a rich source of terpenoid compounds, mainly sesquiterpene lactones, several of which show antiprotozoal activity. In the search for new trypanocidal compounds, S. satureiifolia var. satureiifolia and S. alpina were studied. Two sesquiterpene lactones, santhemoidin C and 2-oxo-8-deoxyligustrin, respectively, were isolated. These compounds were assessed in vitro against Trypanosoma cruzi stages, showing IC50 values of 11.80 and 4.98 on epimastigotes, 56.08 and 26.19 on trypomastigotes and 4.88 and 20.20 µM on amastigotes, respectively. Cytotoxicity was evaluated on Vero cells by the MTT assay. The effect of the compounds on trypanothyone reductase (TcTR), Trans-sialidase (TcTS) and the prolyl oligopeptidase of 80 kDa (Tc80) as potential molecular targets of T. cruzi was investigated. Santhemoidin C inhibited oligopeptidase activity when tested against recombinant Tc80 using a fluorometric assay, reaching an IC50 of 34.9 µM. Molecular docking was performed to study the interaction between santhemoidin C and the Tc80 protein, reaching high docking energy levels. Plasma membrane shedding and cytoplasmic vacuoles, resembling autophagosomes, were detected by transmission microscopy in parasites treated with santhemoidin C. Based on these results, santhemoidin C represents a promising candidate for further studies in the search for new molecules for the development of trypanocidal drugs.

19.
Biochim Biophys Acta Gen Subj ; 1867(12): 130483, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802371

RESUMO

BACKGROUND: During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS: Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS: Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-ß and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS: Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-ß production. SIGNIFICANCE: This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.


Assuntos
Interferon Tipo I , Ácidos Nucleicos , Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Infecção por Zika virus/metabolismo , Transdução de Sinais , Proteínas Virais/genética
20.
J Biol Chem ; 286(2): 1189-95, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21059660

RESUMO

Superantigens (SAgs) are bacterial or viral toxins that bind MHC class II (MHC-II) molecules and T-cell receptor (TCR) in a nonconventional manner, inducing T-cell activation that leads to inflammatory cytokine production, which may result in acute toxic shock. In addition, the emerging threat of purpura fulminans and community-associated meticillin-resistant Staphylococcus aureus emphasizes the importance of a better characterization of SAg binding to their natural ligands that may allow the development of reagents to neutralize their action. The three-dimensional structure of the complex between a mouse TCR ß chain (mVß8.2) and staphylococcal enterotoxin G (SEG) at 2.0 Å resolution revealed a binding site that does not conserve the "hot spots" present in mVß8.2-SEC2, mVß8.2-SEC3, mVß8.2-SEB, and mVß8.2-SPEA complexes. Analysis of the mVß8.2-SEG interface allowed us to explain the higher affinity of this complex compared with the others, which may account for the early activation of T-cells bearing mVß8.2 by SEG. This mode of interaction between SEG and mVß8.2 could be an adaptive advantage to bestow on the pathogen a faster rate of colonization of the host.


Assuntos
Enterotoxinas/química , Enterotoxinas/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Staphylococcus aureus/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Cristalografia por Raios X , Escherichia coli , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA