Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(37): 11924-7, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26340106

RESUMO

Reaction of the polysulfonated triazole ligand L = 4-(1,2,4-triazol-4-yl)ethanedisulfonate) with iron(II) salts in water yields the trimeric species [Fe3(µ-L)6(H2O)6](6-). This polyanion, as the dimethylammonium salt, shows a thermally induced spin transition above room temperature for the central Fe position in the trimer with a large hysteresis cycle (>85 K) and remarkably slow dynamics. This allows easy quenching of the metastable high-spin (HS) state via gradual cooling (5 K min(-1)). Once it is trapped, the HS state remains metastable. Thermal energy is not able to promote relaxation into the low-spin ground state below 215 K, with a characteristic TTIESST = 250 K, the highest temperature ever observed for thermal trapping of an excited spin state in a switchable molecular material.

2.
Dalton Trans ; 47(34): 11895-11902, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29923570

RESUMO

The magnetic behavior of the polyanion [Fe3(µ-L)6(H2O)6]6- (L2- = (1,2,4-triazol-4-yl)ethanedisulfonate) as the corresponding dimethylammonium salt shows memory effect above room temperature, with a dynamic thermal hysteresis cycle over 90 K and temperature-induced excited spin state trapping (TIESST) phenomena at the highest temperatures reported. Taking advantage of the polyanionic nature of this trimetallic complex, we were able to substitute the dimethylammonium cations by the monovalent heavy alkali metal cesium. This methathesis yielded the salt Cs6[Fe3(µ-L)6(H2O)6], with different molecular packing that increases the number and strength of cation-anion interactions, including a more robust H-bonded network. In this phase, the spin transition still occurs above room temperature, but it is more abrupt and narrow (≈50 K wide hysteresis). Despite these differences, TIESST is observed with almost identical characteristic temperature (TTIESST = 240 K) than in the parent compound, which is an additional experimental evidence supporting the molecular origin of the TIESST behavior in these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA