Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(10): 105001, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962054

RESUMO

We present a self-consistent theory of strongly nonlinear plasma wakefield (bubble or blowout regime of the wakefield) based on the energy conservation approach. Such wakefields are excited in plasmas by intense laser or particle beam drivers and are characterized by the expulsion of plasma electrons from the propagation axis of the driver. As a result, a spherical cavity devoid of electrons (called a "bubble") and surrounded by a thin sheath made of expelled electrons is formed behind the driver. In contrast to the previous theoretical model [W. Lu et al., Phys. Rev. Lett. 96, 165002 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.165002], the presented theory satisfies the energy conservation law, does not require any external fitting parameters, and describes the bubble structure and the electromagnetic field it contains with much higher accuracy in a wide range of parameters. The obtained results are verified by 3D particle-in-cell simulations.

2.
Phys Rev Lett ; 125(10): 104801, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955303

RESUMO

Acceleration of ultrathin foils by the laser radiation pressure promises a compact alternative to the conventional ion sources. Among the challenges on the way to practical realization, one fundamental is a strong transverse plasma instability, which develops density perturbations and breaks the acceleration. In this Letter, we develop a theoretical model supported by three-dimensional numerical simulations to explain the transverse instability growth from noise to wave breaking and its crucial effect on stopping the acceleration. The wave-broken nonlinear mode triggers rapid stochastic heating that finally explodes the target. Possible paths to mitigate this problem for getting efficient ion acceleration are discussed.

3.
Phys Rev Lett ; 120(25): 254802, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979083

RESUMO

Recent progress in laser-driven plasma acceleration now enables the acceleration of electrons to several gigaelectronvolts. Taking advantage of these novel accelerators, ultrashort, compact, and spatially coherent x-ray sources called betatron radiation have been developed and applied to high-resolution imaging. However, the scope of the betatron sources is limited by a low energy efficiency and a photon energy in the 10 s of kiloelectronvolt range, which for example prohibits the use of these sources for probing dense matter. Here, based on three-dimensional particle-in-cell simulations, we propose an original hybrid scheme that combines a low-density laser-driven plasma accelerator with a high-density beam-driven plasma radiator, thereby considerably increasing the photon energy and the radiated energy of the betatron source. The energy efficiency is also greatly improved, with about 1% of the laser energy transferred to the radiation, and the γ-ray photon energy exceeds the megaelectronvolt range when using a 15 J laser pulse. This high-brilliance hybrid betatron source opens the way to a wide range of applications requiring MeV photons, such as the production of medical isotopes with photonuclear reactions, radiography of dense objects in the defense or industrial domains, and imaging in nuclear physics.

4.
Phys Rev Lett ; 121(7): 074802, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169048

RESUMO

The energy spread in laser wakefield accelerators is primarily limited by the energy chirp introduced during the injection and acceleration processes. Here, we propose the use of longitudinal density tailoring to reduce the beam chirp at the end of the accelerator. Experimental data sustained by quasi-3D particle-in-cell simulations show that broadband electron beams can be converted to quasimonoenergetic beams of ≤10% energy spread while maintaining a high charge of more than 120 pC. In the linear and quasilinear regimes of wakefield acceleration, the method could provide even lower, subpercent level, energy spread.

5.
Phys Rev Lett ; 115(15): 155002, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550730

RESUMO

An important limit for energy gain in laser-plasma wakefield accelerators is the dephasing length, after which the electron beam reaches the decelerating region of the wakefield and starts to decelerate. Here, we propose to manipulate the phase of the electron beam in the wakefield, in order to bring the beam back into the accelerating region, hence increasing the final beam energy. This rephasing is operated by placing an upward density step in the beam path. In a first experiment, we demonstrate the principle of this technique using a large energy spread electron beam. Then, we show that it can be used to increase the energy of monoenergetic electron beams by more than 50%.

6.
Phys Rev Lett ; 110(6): 065005, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432264

RESUMO

Spectral measurements of visible coherent transition radiation produced by a laser-plasma-accelerated electron beam are reported. The significant periodic modulations that are observed in the spectrum result from the interference of transition radiation produced by multiple bunches of electrons. A Fourier analysis of the spectral interference fringes reveals that electrons are injected and accelerated in multiple plasma wave periods, up to at least 10 periods behind the laser pulse. The bunch separation scales with the plasma wavelength when the plasma density is changed over a wide range. An analysis of the spectral fringe visibility indicates that the first bunch contains most of the charge.

7.
Phys Rev Lett ; 111(8): 085005, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010450

RESUMO

Laser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17 mm·mrad) and a low energy spread (2%), while retaining a high charge (~100 pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities.

8.
Phys Rev Lett ; 110(8): 085001, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473156

RESUMO

It is observed that the interaction of an intense ultrashort laser pulse with a near-critical gas jet results in the pulse collapse and the deposition of a significant fraction of the energy. This deposition happens in a small and well-localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over ~ 150 µm at a subrelativistic velocity (~ c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated with the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizable magnetic dipole that sustains the electron current over several picoseconds.

9.
Phys Rev Lett ; 111(13): 135002, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116787

RESUMO

The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

10.
Phys Rev Lett ; 108(11): 115003, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540480

RESUMO

In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser is prevented when multiple plasma instabilities, such as filamentation and hosing, and nonlinear coherent structures (vortices or postsolitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these instabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 µm (Gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.

11.
Phys Rev Lett ; 108(7): 075004, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401218

RESUMO

Experimental measurements of backward accelerated protons are presented. The beam is produced when an ultrashort (5 fs) laser pulse, delivered by a kHz laser system, with a high temporal contrast (10(8)), interacts with a thick solid target. Under these conditions, proton cutoff energy dependence with laser parameters, such as pulse energy, polarization (from p to s), and pulse duration (from 5 to 500 fs), is studied. Theoretical model and two-dimensional particle-in-cell simulations, in good agreement with a large set of experimental results, indicate that proton acceleration is directly driven by Brunel electrons, in contrast to conventional target normal sheath acceleration that relies on electron thermal pressure.

12.
Med Phys ; 39(6): 3501-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755730

RESUMO

PURPOSE: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. METHODS: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. RESULTS: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. CONCLUSIONS: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.


Assuntos
Elétrons/uso terapêutico , Lasers , Aceleradores de Partículas , Gases em Plasma , Doses de Radiação , Radioterapia/instrumentação , Estudos de Viabilidade , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
13.
Nature ; 444(7120): 737-9, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17151663

RESUMO

In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science.

14.
Opt Lett ; 36(13): 2426-8, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725433

RESUMO

Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high-quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 µm and produces a synchrotron spectrum with critical energy E(c)=12.3±2.5 keV and 109 photons per shot in the whole spectrum.


Assuntos
Lasers , Imagem Molecular/métodos , Animais , Abelhas , Calibragem , Estudos de Viabilidade , Fatores de Tempo , Raios X
15.
Phys Rev Lett ; 107(25): 255003, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22243084

RESUMO

The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.

16.
Phys Rev Lett ; 107(21): 215004, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181891

RESUMO

The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.

17.
Phys Rev E ; 104(5): L053201, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942843

RESUMO

In a dense gas plasma a short laser pulse propagates in a relativistic self-trapping mode, which enables the effective conversion of laser energy to the accelerated electrons. This regime sustains effective loading which maximizes the total charge of the accelerating electrons, that provides a large amount of betatron radiation. The three-dimensional particle-in-cell simulations demonstrate how such a regime triggers x-ray generation with 0.1-1 MeV photon energies, low divergence, and high brightness. It is shown that a 135-TW laser can be used to produce 3×10^{10} photons of >10 keV energy and a 1.2-PW laser makes it possible generating about 10^{12} photons in the same energy range. The laser-to-gamma energy conversion efficiency is up to 10^{-4} for the high-energy photons, ∼100 keV, while the conversion efficiency to the entire keV-range x rays is estimated to be a few tenths of a percent.

18.
Nature ; 431(7008): 541-4, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15457253

RESUMO

Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

19.
Phys Rev Lett ; 103(19): 194804, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365930

RESUMO

Beam loading is the phenomenon which limits the charge and the beam quality in plasma based accelerators. An experimental study conducted with a laser-plasma accelerator is presented. Beam loading manifests itself through the decrease of the beam energy, the reduction of dark current, and the increase of the energy spread for large beam charge. 3D PIC simulations are compared to the experimental results and confirm the effects of beam loading. It is found that, in our experimental conditions, the trapped electron beams generate decelerating fields on the order of 1 (GV/m)/pC and that beam loading effects are optimized for trapped charges of about 20 pC.

20.
Phys Med Biol ; 54(11): 3315-28, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19430107

RESUMO

In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.


Assuntos
Elétrons/uso terapêutico , Lasers , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia , Simulação por Computador , Humanos , Magnetismo/métodos , Masculino , Método de Monte Carlo , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA