Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Res Rev ; 41(4): 2247-2315, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33645848

RESUMO

Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved ß-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Química Farmacêutica , Descoberta de Drogas , Humanos , Ligantes
2.
J Enzyme Inhib Med Chem ; 35(1): 935-949, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32249633

RESUMO

A series of 19 novel pyrido-imidazodiazepinones, with modulations of positions 2, 3 and 4 of the diazepine ring were synthesised and screened for their in vitro cytotoxic activities against two melanoma cell lines (A375 and MDA-MB-435) and for their potential toxicity against NIH-3T3 non-cancerous cells. Selected compounds were also evaluated on the NCI-60 cell line panel. The SAR study revealed that the molecular volume and the cLogP of compounds modified at position 2 were significantly correlated with the activity of these compounds on melanoma cell lines. Moreover, introduction of a heterocyclic group at position 2 or an azido-alkyl chain at position 4 led to compounds displaying a significantly different activity profile on the NCI-60 cell line panel, compared to phenyl-substituted compounds at position 2 of the diazepinone. This study provides us crucial information for the development of new derivatives active against melanoma.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Imidazóis/farmacologia , Melanoma/tratamento farmacológico , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Azepinas/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Estrutura Molecular , Células NIH 3T3 , Piridinas/química , Relação Estrutura-Atividade
3.
J Pharm Sci ; 110(3): 1197-1205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33069708

RESUMO

The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.


Assuntos
Melanoma , Óleos de Plantas , Animais , Óleo de Rícino , Emulsões , Melanoma/tratamento farmacológico , Camundongos , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA