Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 131: 155-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27038743

RESUMO

The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages.


Assuntos
Região CA1 Hipocampal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Ritmo Gama/fisiologia , Memória/fisiologia , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Genes Precoces , Camundongos , Camundongos Knockout
2.
Neurobiol Learn Mem ; 96(2): 280-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21624482

RESUMO

Extinction of instrumental responses is an essential skill for adaptive behavior such as foraging. So far, only few studies have focused on extinction following appetitive conditioning in mice. We studied extinction of appetitive operant lever-press behavior in six standard inbred mouse strains (A/J, C3H/HeJ, C57BL/6J, DBA/2J, BALB/cByJ and NOD/Ltj) and eight recombinant inbred mouse lines. From the response rates at the end of operant and extinction training we computed an extinction index, with higher values indicating better capability to omit behavioral responding in absence of reward. This index varied highly across the mouse lines tested, and the variability was partially due to a significant heritable component of 12.6%. To further characterize the relationship between operant learning and extinction, we calculated the slope of the time course of extinction across sessions. While many strains showed a considerable capacity to omit responding when lever pressing was no longer rewarded, we found a few lines showing an abnormally high perseveration in lever press behavior, showing no decay in response scores over extinction sessions. No correlation was found between operant and extinction response scores, suggesting that appetitive operant learning and extinction learning are dissociable, a finding in line with previous studies indicating that these forms of learning are dependent on different brain areas. These data shed light on the heritable basis of extinction learning and may help develop animal models of addictive habits and other perseverative disorders, such as compulsive food seeking and eating.


Assuntos
Comportamento Animal/fisiologia , Comportamento Compulsivo/fisiopatologia , Condicionamento Operante/fisiologia , Extinção Psicológica/fisiologia , Comportamento Obsessivo/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Transtorno Obsessivo-Compulsivo/fisiopatologia , Esquema de Reforço
3.
Front Behav Neurosci ; 4: 171, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21119771

RESUMO

To study the heritability of different training stages of appetitive operant conditioning, we carried out behavioral screening of 5 standard inbred mouse strains, 28 recombinant-inbred (BxD) mouse lines and their progenitor strains C57BL/6J and DBA/2J. We also computed correlations between successive training stages to study whether learning deficits at an advanced stage of operant conditioning may be dissociated from normal performance in preceding phases of training. The training consisted of two phases: an operant nose poking (NP) phase, in which mice learned to collect a sucrose pellet from a food magazine by NP, and an operant lever press and NP phase, in which mice had to execute a sequence of these two actions to collect a food pellet. As a measure of magazine oriented exploration, we also studied the nose poke entries in the food magazine during the intertrial intervals at the beginning of the first session of the nose poke training phase. We found significantly heritable components in initial magazine checking behavior, operant NP and lever press-NP. Performance levels in these phases were positively correlated, but several individual strains were identified that showed poor lever press-NP while performing well in preceding training stages. Quantitative trait loci mapping revealed suggestive likelihood ratio statistic peaks for initial magazine checking behavior and lever press-NP. These findings indicate that consecutive stages toward more complex operant behavior show significant heritable components, as well as dissociability between stages in specific mouse strains. These heritable components may reside in different chromosomal areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA