Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 70(2): 447-457, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30380098

RESUMO

Rho/Rac of plants (ROP) GTPases are plant-specific small GTPases that regulate cell morphology. ROP activity is controlled by several families of regulatory proteins. However, how these diverse regulators contribute to polarized growth remains understudied. In a system-wide approach, we used RNAi to silence each gene family of known ROP regulators in the juvenile tissues of the moss Physcomitrella patens. We found that the GTPase activating proteins, but not the ROP enhancers, are essential for tip growth. The guanine exchange factors (GEFs), which are comprised of ROPGEFs and Spikes, both contribute to growth. However, silencing Spikes results in less-polarized plants as compared to silencing ROPGEFs, suggesting that Spikes contribute more to establishing cell polarity. Silencing the single-gene family of guanine dissociation inhibitors also inhibits growth, resulting in small, unpolarized plants. In contrast, silencing the ROP effector ROP-interactive CRIB-containing (RIC) protein, which is encoded by a single gene, results in plants larger than the controls, suggesting that RIC functions to inhibit tip growth in moss. Taken together, this systematic loss-of-function survey provides insights into the function of ROP regulators during polarized growth.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Bryopsida/genética , Interferência de RNA
2.
Plant Direct ; 3(9): e00168, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31523744

RESUMO

CRISPR-Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA-guided nuclease to initiate double-strand breaks. Until recently, classical RAD51-mediated homologous recombination has been a powerful tool for gene targeting in the moss Physcomitrella patens. However, CRISPR-Cas9-mediated genome editing in P. patens was shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR-Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR-Cas9 genome editing in P. patens, here we describe the generation and use of a flexible and modular CRISPR-Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology-directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5' and 3' ends of gene coding regions. With regard to homology-directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a "stop codon cassette" with downstream near-effortless genotyping.

3.
Biophys Rev ; 10(6): 1683-1693, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30382556

RESUMO

Advances in cell biology have been largely driven by pioneering work in model systems, the majority of which are from one major eukaryotic lineage, the opisthokonts. However, with the explosion of genomic information in many lineages, it has become clear that eukaryotes have incredible diversity in many cellular systems, including the cytoskeleton. By identifying model systems in diverse lineages, it may be possible to begin to understand the evolutionary origins of the eukaryotic cytoskeleton. Within the plant lineage, cell biological studies in the model moss, Physcomitrella patens, have over the past decade provided key insights into how the cytoskeleton drives cell and tissue morphology. Here, we review P. patens attributes that make it such a rich resource for cytoskeletal cell biological inquiry and highlight recent key findings with regard to intracellular transport, microtubule-actin interactions, and gene discovery that promises for many years to provide new cytoskeletal players.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA