Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Psychiatry ; 22(1): 830, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575442

RESUMO

BACKGROUND: Automated speech analysis has gained increasing attention to help diagnosing depression. Most previous studies, however, focused on comparing speech in patients with major depressive disorder to that in healthy volunteers. An alternative may be to associate speech with depressive symptoms in a non-clinical sample as this may help to find early and sensitive markers in those at risk of depression. METHODS: We included n = 118 healthy young adults (mean age: 23.5 ± 3.7 years; 77% women) and asked them to talk about a positive and a negative event in their life. Then, we assessed the level of depressive symptoms with a self-report questionnaire, with scores ranging from 0-60. We transcribed speech data and extracted acoustic as well as linguistic features. Then, we tested whether individuals below or above the cut-off of clinically relevant depressive symptoms differed in speech features. Next, we predicted whether someone would be below or above that cut-off as well as the individual scores on the depression questionnaire. Since depression is associated with cognitive slowing or attentional deficits, we finally correlated depression scores with performance in the Trail Making Test. RESULTS: In our sample, n = 93 individuals scored below and n = 25 scored above cut-off for clinically relevant depressive symptoms. Most speech features did not differ significantly between both groups, but individuals above cut-off spoke more than those below that cut-off in the positive and the negative story. In addition, higher depression scores in that group were associated with slower completion time of the Trail Making Test. We were able to predict with 93% accuracy who would be below or above cut-off. In addition, we were able to predict the individual depression scores with low mean absolute error (3.90), with best performance achieved by a support vector machine. CONCLUSIONS: Our results indicate that even in a sample without a clinical diagnosis of depression, changes in speech relate to higher depression scores. This should be investigated in more detail in the future. In a longitudinal study, it may be tested whether speech features found in our study represent early and sensitive markers for subsequent depression in individuals at risk.


Assuntos
Transtorno Depressivo Maior , Adulto Jovem , Humanos , Feminino , Adulto , Masculino , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/psicologia , Depressão/diagnóstico , Estudos Longitudinais , Fala , Inquéritos e Questionários
2.
Alzheimers Dement (Amst) ; 16(4): e70011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376498

RESUMO

Introduction: We investigated the agreement between automated and gold-standard manual transcriptions of telephone chatbot-based semantic verbal fluency testing. Methods: We examined 78 cases from the Screening over Speech in Unselected Populations for Clinical Trials in AD (PROSPECT-AD) study, including cognitively normal individuals and individuals with subjective cognitive decline, mild cognitive impairment, and dementia. We used Bayesian Bland-Altman analysis of word count and the qualitative features of semantic cluster size, cluster switches, and word frequencies. Results: We found high levels of agreement for word count, with a 93% probability of a newly observed difference being below the minimally important difference. The qualitative features had fair levels of agreement. Word count reached high levels of discrimination between cognitively impaired and unimpaired individuals, regardless of transcription mode. Discussion: Our results support the use of automated speech recognition particularly for the assessment of quantitative speech features, even when using data from telephone calls with cognitively impaired individuals in their homes. Highlights: High levels of agreement were found between automated and gold-standard manual transcriptions of telephone chatbot-based semantic verbal fluency testing, particularly for word count.The qualitative features had fair levels of agreement.Word count reached high levels of discrimination between cognitively impaired and unimpaired individuals, regardless of transcription mode.Automated speech recognition for the assessment of quantitative and qualitative speech features, even when using data from telephone calls with cognitively impaired individuals in their homes, seems feasible and reliable.

3.
J Alzheimers Dis ; 91(3): 1165-1171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36565116

RESUMO

BACKGROUND: Modern prodromal Alzheimer's disease (AD) clinical trials might extend outreach to a general population, causing high screen-out rates and thereby increasing study time and costs. Thus, screening tools that cost-effectively detect mild cognitive impairment (MCI) at scale are needed. OBJECTIVE: Develop a screening algorithm that can differentiate between healthy and MCI participants in different clinically relevant populations. METHODS: Two screening algorithms based on the remote ki:e speech biomarker for cognition (ki:e SB-C) were designed on a Dutch memory clinic cohort (N = 121) and a Swedish birth cohort (N = 404). MCI classification was each evaluated on the training cohort as well as on the unrelated validation cohort. RESULTS: The algorithms achieved a performance of AUC  0.73 and AUC  0.77 in the respective training cohorts and AUC  0.81 in the unseen validation cohorts. CONCLUSION: The results indicate that a ki:e SB-C based algorithm robustly detects MCI across different cohorts and languages, which has the potential to make current trials more efficient and improve future primary health care.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Fala , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Aprendizado de Máquina , Cognição , Biomarcadores
4.
Front Dement ; 2: 1271156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39081993

RESUMO

Introduction: Digital cognitive assessments are gathering importance for the decentralized remote clinical trials of the future. Before including such assessments in clinical trials, they must be tested to confirm feasibility and acceptability with the intended participant group. This study presents usability and acceptability data from the Speech on the Phone Assessment (SPeAk) study. Methods: Participants (N = 68, mean age 70.43 years, 52.9% male) provided demographic data and completed baseline and 3-month follow-up phone based assessments. The baseline visit was administered by a trained researcher and included a spontaneous speech assessment and a brief cognitive battery (immediate and delayed recall, digit span, and verbal fluency). The follow-up visit repeated the cognitive battery which was administered by an automatic phone bot. Participants were randomized to receive their cognitive test results acer the final or acer each study visit. Participants completed acceptability questionnaires electronically acer each study visit. Results: There was excellent retention (98.5%), few technical issues (n = 5), and good interrater reliability. Participants rated the assessment as acceptable, confirming the ease of use of the technology and their comfort in completing cognitive tasks on the phone. Participants generally reported feeling happy to receive the results of their cognitive tests, and this disclosure did not cause participants to feel worried. Discussion: The results from this usability and acceptability analysis suggest that completing this brief battery of cognitive tests via a telephone call is both acceptable and feasible in a midlife-to-older adult population in the United Kingdom, living at risk for Alzheimer's disease.

5.
Digit Biomark ; 6(3): 107-116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466952

RESUMO

Introduction: Progressive cognitive decline is the cardinal behavioral symptom in most dementia-causing diseases such as Alzheimer's disease. While most well-established measures for cognition might not fit tomorrow's decentralized remote clinical trials, digital cognitive assessments will gain importance. We present the evaluation of a novel digital speech biomarker for cognition (SB-C) following the Digital Medicine Society's V3 framework: verification, analytical validation, and clinical validation. Methods: Evaluation was done in two independent clinical samples: the Dutch DeepSpA (N = 69 subjective cognitive impairment [SCI], N = 52 mild cognitive impairment [MCI], and N = 13 dementia) and the Scottish SPeAk datasets (N = 25, healthy controls). For validation, two anchor scores were used: the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating (CDR) scale. Results: Verification: The SB-C could be reliably extracted for both languages using an automatic speech processing pipeline. Analytical Validation: In both languages, the SB-C was strongly correlated with MMSE scores. Clinical Validation: The SB-C significantly differed between clinical groups (including MCI and dementia), was strongly correlated with the CDR, and could track the clinically meaningful decline. Conclusion: Our results suggest that the ki:e SB-C is an objective, scalable, and reliable indicator of cognitive decline, fit for purpose as a remote assessment in clinical early dementia trials.

6.
Eur Psychiatry ; 64(1): e64, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641989

RESUMO

BACKGROUND: Certain neuropsychiatric symptoms (NPS), namely apathy, depression, and anxiety demonstrated great value in predicting dementia progression, representing eventually an opportunity window for timely diagnosis and treatment. However, sensitive and objective markers of these symptoms are still missing. Therefore, the present study aims to investigate the association between automatically extracted speech features and NPS in patients with mild neurocognitive disorders. METHODS: Speech of 141 patients aged 65 or older with neurocognitive disorder was recorded while performing two short narrative speech tasks. NPS were assessed by the neuropsychiatric inventory. Paralinguistic markers relating to prosodic, formant, source, and temporal qualities of speech were automatically extracted, correlated with NPS. Machine learning experiments were carried out to validate the diagnostic power of extracted markers. RESULTS: Different speech variables are associated with specific NPS; apathy correlates with temporal aspects, and anxiety with voice quality-and this was mostly consistent between male and female after correction for cognitive impairment. Machine learning regressors are able to extract information from speech features and perform above baseline in predicting anxiety, apathy, and depression scores. CONCLUSIONS: Different NPS seem to be characterized by distinct speech features, which are easily extractable automatically from short vocal tasks. These findings support the use of speech analysis for detecting subtypes of NPS in patients with cognitive impairment. This could have great implications for the design of future clinical trials as this cost-effective method could allow more continuous and even remote monitoring of symptoms.


Assuntos
Apatia , Disfunção Cognitiva , Idoso , Ansiedade/diagnóstico , Disfunção Cognitiva/diagnóstico , Feminino , Humanos , Aprendizado de Máquina , Masculino , Testes Neuropsicológicos , Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA