Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tumour Biol ; 39(3): 1010428317694573, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28351298

RESUMO

Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Metilação de DNA/genética , Neoplasias do Colo do Útero/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Idoso , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas Nucleares , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Regiões Promotoras Genéticas , Fatores de Transcrição , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
2.
Cancer Biomark ; 35(3): 257-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245370

RESUMO

PURPOSE: Aberrant DNA methylation plays a crucial role in oral carcinogenesis. Our previous study demonstrated hypermethylation of DAPK1, LRPPRC, RAB6C, and ZNF471 promoters in patients with tongue squamous cell carcinoma compared with normal samples. Methylation profiling using salivary DNA is considered a non-invasive alternative to tissue samples. Hence, the present study tested the DNA methylation status of these four promoters as indicators of oral cancer progression. METHODS: We performed the bisulfite-based targeted next-generation sequencing of four candidate genes in saliva and tissue DNA from normal, premalignant, and squamous cell carcinoma subjects. The clinicopathological association, diagnostic, and prognostic utility of aberrant DNA methylation were evaluated using the TCGA-HNSCC dataset. Using the Xgboost algorithm and logistic regression, CpG sites were prioritized, and Receiver Operating Characteristic was generated. By Log-rank test and Kaplan-Meier (KM) curves, an association between methylation and overall survival (OS), disease-free interval (DFI), and progression-free interval (PFI) were computed. RESULTS: We identified all four genes as significantly hypermethylated in premalignant and malignant samples compared with normal samples. The methylation levels were comparable between saliva and tissue samples with an r-value of 0.6297 to 0.8023 and 0.7823 to 0.9419 between premalignant tissue vs. saliva and OC vs. saliva, respectively. We identified an inverse correlation between DAPK1, LRPPRC, RAB6C, and ZNF471 promoter methylation with their expression. A classifier of 8 differentially methylated CpG sites belonging to DAPK1, RAB6C, and ZNF471 promoters was constructed, showing an AUC of 0.984 to differentiate tumors from normal samples. The differential methylation status of DAPK1, LRPPRC, and ZNF71 promoters was prognostically important. Abnormal expression of all four genes was associated with immune infiltration. CONCLUSIONS: Thus, methylation analysis of these candidate CpG sites from saliva can be helpful as a non-invasive tool for the clinical management of OC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/genética , Ilhas de CpG/genética , DNA , Metilação de DNA , Neoplasias de Cabeça e Pescoço/genética , Proteínas rab de Ligação ao GTP , Neoplasias da Língua/genética , Saliva
3.
Mitochondrion ; 48: 60-66, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31029642

RESUMO

Lead is a public health hazard substance affecting millions of people worldwide especially those who are occupationally exposed. Our study aimed to investigate the effect of occupational lead exposure on mitochondria DNA (mtDNA). By sequencing the whole mitochondria genome, we identified 25 unique variants in lead exposed subjects affecting 10 protein coding genes in the order of MT-ND1, MT-ND2, MT-CO2, MT-ATP8, MT-ATP6, MT-CO3, MT-ND3, MT-ND4, MT-ND5, and MT-CYB. Mitochondria functional analysis revealed that exposure to lead can reduce reactive oxygen species (ROS) levels, alter mitochondria membrane potential (MMP) and increase mitochondrial mass (MM). This was further supported by mtDNA copy number analysis which was increased in lead exposed individuals compared to unexposed control group indicating the compensatory mechanism that lead has in stabilizing the mitochondria. This is the first report of mtDNA mutation and copy number analysis in occupationally lead exposed subjects where we identified mtDNA mutation signature associated with lead exposure thus providing evidence for altered molecular mechanism to compensate mitochondrial oxidative stress.


Assuntos
Genoma Mitocondrial/efeitos dos fármacos , Genoma Mitocondrial/genética , Chumbo/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mutação/efeitos dos fármacos , Mutação/genética , Adulto , DNA Mitocondrial/genética , Genes Mitocondriais/efeitos dos fármacos , Genes Mitocondriais/genética , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA