RESUMO
In some sectors of the water resources management, the digital revolution process is slowed by some blocking factors such as costs, lack of digital expertise, resistance to change, etc. In addition, in the era of Big Data, many are the sources of information available in this field, but they are often not fully integrated. The adoption of different proprietary solutions to sense, collect and manage data is one of the main problems that hampers the availability of a fully integrated system. In this context, the aim of the project is to verify if a fully open, cost-effective and replicable digital ecosystem for lake monitoring can fill this gap and help the digitalization process using cloud based technology and an Automatic High-Frequency Monitoring System (AHFM) built using open hardware and software components. Once developed, the system is tested and validated in a real case scenario by integrating the historical databases and by checking the performance of the AHFM system. The solution applied the edge computing paradigm in order to move some computational work from server to the edge and fully exploiting the potential offered by low power consuming devices.
Assuntos
Ecossistema , Lagos , Análise Custo-Benefício , Software , Qualidade da ÁguaRESUMO
Climate change and human activities have a strong impact on lakes and their catchments, so to understand ongoing processes it is fundamental to monitor environmental variables with a spatially well-distributed and high frequency network and efficiently share data. An effective sharing and interoperability of environmental information between technician and end-user fosters an in-depth knowledge of the territory and its critical environmental issues. In this paper, we present the approaches and the results obtained during the PITAGORA project (Interoperable Technological Platform for Acquisition, Management and Organization of Environmental data, related to the lake basin). PITAGORA was aimed at developing both instruments and data management, including pre-processing and quality control of raw data to ensure that data are findable, accessible, interoperable, and reusable (FAIR principles). The main results show that the developed instrumentation is low-cost, easily implementable and reliable, and can be applied to the measurement of diverse environmental parameters such as meteorological, hydrological, physico-chemical, and geological. The flexibility of the solutions proposed make our system adaptable to different monitoring purposes, research, management, and civil protection. The real time access to environmental information can improve management of a territory and ecosystems, safety of the population, and sustainable socio-economic development.
Assuntos
Ecossistema , Lagos , Monitoramento Ambiental , Atividades Humanas , Humanos , Hidrologia , MeteorologiaRESUMO
The aim of this study is to test a series of methods relying on hyperspectral measurements to characterize phytoplankton in clear lake waters. The phytoplankton temporal evolutions were analyzed exploiting remote sensed indices and metrics linked to the amount of light reaching the target (EPAR), the chlorophyll-a concentration ([Chl-a]OC4) and the fluorescence emission proxy. The latter one evaluated by an adapted version of the Fluorescence Line Height algorithm (FFLH). A peculiar trend was observed around the solar noon during the clear sky days. It is characterized by a drop of the FFLH metric and the [Chl-a]OC4 index. In addition to remote sensed parameters, water samples were also collected and analyzed to characterize the water body and to evaluate the in-situ fluorescence (FF) and absorbed light (FA). The relations between the remote sensed quantities and the in-situ values were employed to develop and test several phytoplankton primary production (PP) models. Promising results were achieved replacing the FA by the EPAR or FFLH in the equation evaluating a PP proxy (R2 > 0.65). This study represents a preliminary outcome supporting the PP monitoring in inland waters by means of remote sensing-based indices and fluorescence metrics.
Assuntos
Lagos , Fitoplâncton , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Tecnologia de Sensoriamento RemotoRESUMO
Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.