RESUMO
OBJECTIVE: To assess the value of opportunistic biomarkers derived from chest CT performed at hospital admission of COVID-19 patients for the phenotypization of high-risk patients. METHODS: In this multicentre retrospective study, 1845 consecutive COVID-19 patients with chest CT performed within 72 h from hospital admission were analysed. Clinical and outcome data were collected by each center 30 and 80 days after hospital admission. Patients with unknown outcomes were excluded. Chest CT was analysed in a single core lab and behind pneumonia CT scores were extracted opportunistic data about atherosclerotic profile (calcium score according to Agatston method), liver steatosis (≤ 40 HU), myosteatosis (paraspinal muscle F < 31.3 HU, M < 37.5 HU), and osteoporosis (D12 bone attenuation < 134 HU). Differences according to treatment and outcome were assessed with ANOVA. Prediction models were obtained using multivariate binary logistic regression and their AUCs were compared with the DeLong test. RESULTS: The final cohort included 1669 patients (age 67.5 [58.5-77.4] yo) mainly men 1105/1669, 66.2%) and with reduced oxygen saturation (92% [88-95%]). Pneumonia severity, high Agatston score, myosteatosis, liver steatosis, and osteoporosis derived from CT were more prevalent in patients with more aggressive treatment, access to ICU, and in-hospital death (always p < 0.05). A multivariable model including clinical and CT variables improved the capability to predict non-critical pneumonia compared to a model including only clinical variables (AUC 0.801 vs 0.789; p = 0.0198) to predict patient death (AUC 0.815 vs 0.800; p = 0.001). CONCLUSION: Opportunistic biomarkers derived from chest CT can improve the characterization of COVID-19 high-risk patients. CLINICAL RELEVANCE STATEMENT: In COVID-19 patients, opportunistic biomarkers of cardiometabolic risk extracted from chest CT improve patient risk stratification. KEY POINTS: ⢠In COVID-19 patients, several information about patient comorbidities can be quantitatively extracted from chest CT, resulting associated with the severity of oxygen treatment, access to ICU, and death. ⢠A prediction model based on multiparametric opportunistic biomarkers derived from chest CT resulted superior to a model including only clinical variables in a large cohort of 1669 patients suffering from SARS- CoV2 infection. ⢠Opportunistic biomarkers of cardiometabolic comorbidities derived from chest CT may improve COVID-19 patients' risk stratification also in absence of detailed clinical data and laboratory tests identifying subclinical and previously unknown conditions.
Assuntos
COVID-19 , Doenças Cardiovasculares , Fígado Gorduroso , Osteoporose , Masculino , Humanos , Idoso , Feminino , Estudos Retrospectivos , SARS-CoV-2 , Mortalidade Hospitalar , Tomografia Computadorizada por Raios X/métodos , BiomarcadoresRESUMO
PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients' risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web-mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020). RESULTS: The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816-0.867) on wave 1 and was used to build a 0-100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402-0.8766). CONCLUSIONS: AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis.
Assuntos
COVID-19 , Adulto , Inteligência Artificial , Cálcio , Humanos , Estudos Retrospectivos , SARS-CoV-2RESUMO
OBJECTIVES: Enlarged main pulmonary artery diameter (MPAD) resulted to be associated with pulmonary hypertension and mortality in a non-COVID-19 setting. The aim was to investigate and validate the association between MPAD enlargement and overall survival in COVID-19 patients. METHODS: This is a cohort study on 1469 consecutive COVID-19 patients submitted to chest CT within 72 h from admission in seven tertiary level hospitals in Northern Italy, between March 1 and April 20, 2020. Derivation cohort (n = 761) included patients from the first three participating hospitals; validation cohort (n = 633) included patients from the remaining hospitals. CT images were centrally analyzed in a core-lab blinded to clinical data. The prognostic value of MPAD on overall survival was evaluated at adjusted and multivariable Cox's regression analysis on the derivation cohort. The final multivariable model was tested on the validation cohort. RESULTS: In the derivation cohort, the median age was 69 (IQR, 58-77) years and 537 (70.6%) were males. In the validation cohort, the median age was 69 (IQR, 59-77) years with 421 (66.5%) males. Enlarged MPAD (≥ 31 mm) was a predictor of mortality at adjusted (hazard ratio, HR [95%CI]: 1.741 [1.253-2.418], p < 0.001) and multivariable regression analysis (HR [95%CI]: 1.592 [1.154-2.196], p = 0.005), together with male gender, old age, high creatinine, low well-aerated lung volume, and high pneumonia extension (c-index [95%CI] = 0.826 [0.796-0.851]). Model discrimination was confirmed on the validation cohort (c-index [95%CI] = 0.789 [0.758-0.823]), also using CT measurements from a second reader (c-index [95%CI] = 0.790 [0.753;0.825]). CONCLUSION: Enlarged MPAD (≥ 31 mm) at admitting chest CT is an independent predictor of mortality in COVID-19. KEY POINTS: ⢠Enlargement of main pulmonary artery diameter at chest CT performed within 72 h from the admission was associated with a higher rate of in-hospital mortality in COVID-19 patients. ⢠Enlargement of main pulmonary artery diameter (≥ 31 mm) was an independent predictor of death in COVID-19 patients at adjusted and multivariable regression analysis. ⢠The combined evaluation of clinical findings, lung CT features, and main pulmonary artery diameter may be useful for risk stratification in COVID-19 patients.
Assuntos
COVID-19 , Artéria Pulmonar , Idoso , Estudos de Coortes , Feminino , Humanos , Itália/epidemiologia , Masculino , Artéria Pulmonar/diagnóstico por imagem , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND AND AIMS: Several studies reported a high incidence of pulmonary embolism (PE) among patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, but detailed data about clinical characteristics, risk factors of these patients and prognostic role of PE are still lacking. We aim to evaluate the occurrence of pulmonary embolism among patients with SARS-CoV-2 infection, and to describe their risk factors, clinical characteristics, and in-hospital clinical outcomes. METHODS: This is a multicenter Italian study including 333 consecutive SARS-CoV-2 patients admitted to seven hospitals from February 22 to May 15, 2020. All the patients underwent computed tomography pulmonary angiography (CTPA) for PE detection. In particular, CTPA was performed in case of inadequate response to high-flow oxygen therapy (Fi02≥0.4 to maintain Sp02≥92%), elevated D-dimer (>0.5µg/mL), or echocardiographic signs of right ventricular dysfunction. Clinical, laboratory and radiological data were also analyzed. RESULTS: Among 333 patients with laboratory confirmed SARS-CoV-2 pneumonia and undergoing CTPA, PE was detected in 109 (33%) cases. At CTPA, subsegmental, segmental, lobar and central thrombi were detected in 31 (29%), 50 (46%), 20 (18%) and 8 (7%) cases, respectively. In-hospital death occurred in 29 (27%) patients in the PE-group and in 47 (21%) patients in the non-PE group (p = 0.25). Patients in PE-group had a low rate of traditional risk factors and deep vein thrombosis was detected in 29% of patients undergoing compression ultrasonography. In 71% of cases with documented PE, the thrombotic lesions were located in the correspondence of parenchymal consolidation areas. CONCLUSIONS: Despite a low rate of risk factors for venous thromboembolism, PE is present in about 1 out 3 patients with SARS-CoV-2 pneumonia undergoing CTPA for inadequate response to oxygen therapy, elevated D-dimer level, or echocardiographic signs of right ventricular dysfunction. In most of the cases, the thromboses were located distally in the pulmonary tree and were mainly confined within pneumonia areas.
Assuntos
COVID-19/complicações , Embolia Pulmonar/etiologia , Doença Aguda , Idoso , COVID-19/sangue , COVID-19/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico por imagem , Fatores de Risco , SARS-CoV-2/isolamento & purificaçãoRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread worldwide determining dramatic impacts on healthcare systems. Early identification of high-risk parameters is required in order to provide the best therapeutic approach. Coronary, thoracic aorta and aortic valve calcium can be measured from a non-gated chest computer tomography (CT) and are validated predictors of cardiovascular events and all-cause mortality. However, their prognostic role in acute systemic inflammatory diseases, such as COVID-19, has not been investigated. OBJECTIVES: The aim was to evaluate the association of coronary artery calcium and total thoracic calcium on in-hospital mortality in COVID-19 patients. METHODS: 1093 consecutive patients from 16 Italian hospitals with a positive swab for COVID-19 and an admission chest CT for pneumonia severity assessment were included. At CT, coronary, aortic valve and thoracic aorta calcium were qualitatively and quantitatively evaluated separately and combined together (total thoracic calcium) by a central Core-lab blinded to patients' outcomes. RESULTS: Non-survivors compared to survivors had higher coronary artery [Agatston (467.76 â± â570.92 vs 206.80 â± â424.13 âmm2, p â< â0.001); Volume (487.79 â± â565.34 vs 207.77 â± â406.81, p â< â0.001)], aortic valve [Volume (322.45 â± â390.90 vs 98.27 â± â250.74 mm2, p â< â0.001; Agatston 337.38 â± â414.97 vs 111.70 â± â282.15, p â< â0.001)] and thoracic aorta [Volume (3786.71 â± â4225.57 vs 1487.63 â± â2973.19 mm2, p â< â0.001); Agatston (4688.82 â± â5363.72 vs 1834.90 â± â3761.25, p â< â0.001)] calcium values. Coronary artery calcium (HR 1.308; 95% CI, 1.046-1.637, p â= â0.019) and total thoracic calcium (HR 1.975; 95% CI, 1.200-3.251, p â= â0.007) resulted to be independent predictors of in-hospital mortality. CONCLUSION: Coronary, aortic valve and thoracic aortic calcium assessment on admission non-gated CT permits to stratify the COVID-19 patients in-hospital mortality risk.
Assuntos
COVID-19/mortalidade , COVID-19/fisiopatologia , Angiografia por Tomografia Computadorizada , Calcificação Vascular/mortalidade , Calcificação Vascular/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Aorta Torácica/diagnóstico por imagem , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/mortalidade , Doenças da Aorta/fisiopatologia , Valva Aórtica/diagnóstico por imagem , COVID-19/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/mortalidade , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Calcificação Vascular/diagnóstico por imagemRESUMO
Atrial fibrillation (AF) is the most common arrhythmia worldwide associated with significant morbidity and mortality and represents a significant health care burden. Goals of AF treatment include prevention of cardioembolic stroke using anticoagulation and device therapy and restoration of sinus rhythm using antiarrhythmic drugs or catheter ablation techniques. A comprehensive assessment of cardiac chamber size and function is often started with echocardiography as a first line diagnostic imaging strategy. Recently, innovations in advanced imaging using cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT) provide a detailed characterization of atrial anatomy and have been shown to accurately exclude thrombus and guide left atrial appendage (LAA) closure or catheter ablation (CA) of atrial fibrillation. Compared to echocardiography, CCT offers an uncompromised spatial resolution and a fast dataset acquisition, with the disadvantages of the need of iodine contrast agent and radiation exposure. CMR, conversely, can rely on very high temporal resolution, the unique feature of tissue characterization and the absence of radiation exposure. However, the main drawbacks of this diagnostic tool are long scan times and low availability. This review will illustrate the vital role of multimodality cardiac imaging in the accurate identification of left atrial, pulmonary vein and LAA size and function, discuss advanced imaging techniques to rule out thrombus and highlight novel CMR and CCT techniques to guide catheter ablation of AF and LAA occlusion.